Open Application Standard Platform for Java V2.3.0

Copyright © 2014-2017 the OASP team

Open Application Standard Platform for Java V2.3.0

Table of Contents

TageTo 0111 o] o U TSP PTUPPPRUPRTPIN viii
A o o1 (=X (1] = P 1
O R = Y =T o o] = 1
1.2. ArchiteCture PrINCIPIES i et e e e 1
1.3, ApPlication ArChITECIUIEcooui e 1
1.3.1. BUSINESS AFCHILECIUIE ...t 2
1.3.2. Technical ArChiItECIUIEcouuiii e 2
1.3.2.1. TeChNOIOgY StACKoiiiiiiiiiiiii e 3

20 O o T 11 T P 5
P22 I ©7o o [10T I @40] 01Y/=T 01110] o S S PSP UPTRUPT 5
P2 0 S \F- 1 111 o [PP PO PPPPT 5
N R - Vo] - o [5
2.1.3. €008 TASKS ..etuiiiiiii e 6
2.1.3.1. TODO ettt e e e e et e e aaaaeae 7

2.1.3.2. FIXME .ottt e 7

2.1.3.3. REVIEW ..ttt ettt 7

P2 I S @do To [T B To o .4 [=T] = i [o] o [P P 7
N T T O To [RS 4 [7
2.1.5.0. BLOBS .oitiiiiiiiii ettt a e e e e aaeae 7

2.1.5.2. ClOSING RESOUITESuuiiiiiiineiiiii ettt ettt e et e e e e 8

2.1.5.3. Lambdas and Streamscoiiiiiiiiiiiiiii e 8

2.1.5.4. OPLONAIS . .ceniiiiieie e 10

2.1.5.5. ENCOING .tuuiiiitiieitiii ettt et et e et e e eaan s 10

2.1.5.6. Prefer general APl ... 10

T IR =T ST UPT 11
N O 1T o | - = P PP PR 11
3.1.1. JavaScript for Java DEVEIOPEIScvuuiiiiii i e 11

3.2, SEBIVICE LAYEI et ettt ettt et a e e eans 13
3.2.1. TYPES OF SEIVICES ...iiiiiieiiii et 13

G T =Y =1 o 11 o P 13
3.2.3. INLEroPerabilityccouniiieiiii e 14
3.2.4. Service CONSIAEIAtIONSuiieeiiii e et e e e e e e et e e et e e e eanaeaeen 14
G T 1= Yol U |) Y/ 14

TR T Mo T (ol - | PP PTUPPN 15
3.3.1. COMPONENE PANT ...t 15
3.3.1.1. Component Part INterfaceccooivuiiiiiiiiii e 15

3.3.1.2. Component Part with Simple Interfaceccooooiiiiiiiiii, 15

3.3.1.3. Component Part Interface with Use Case Decomposition 16

3.3.2. Component IMplemMENtatioNcocvuiiiiiiiiie e e 16
3.3.3. Passing Parameters Among COMPONENTScouuiiiutiiiiiieiieeeiee e 18
3.3 SECUIMLY ettt ettt 18
3.3.4.1. Direct Object REfEIENCESuiiireiei i 19

3.4, DALB-ACCESS LAYEI ...ceiiinieiiiei ettt et et et et e e e et et e e e e e ea e en e 20
O I =T 531 1= o o PN 20
I I R 1 o1 1Y/ 20

A SIMPIE ENLLY oo e 20

Entities and DatatyPeSoiiiiiiiiiiiii e 21

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). ii

Open Application Standard Platform for Java V2.3.0

ENUMETALIONS ...t e e 21

I = 21

Date and TiME ...cooeeiiiiiiiie e e 22

QueryDSL and CUStOmM TYPESuuiiiiiiiieeiiiiie et 22

PHMAIY KBYS .t 22

3.4.1.2. Data ACCESS ODJECT ..cvvviiiiii i 22
(DY@ 11 =] o = Lo = PP 23

DAO IMPIEMENTALION ... cceeetiieeeiiii et e e e 23

I I TR O U= 1Y 23
StAtIC QUETIES ettt e 23

Using Queries to Avoid Bidirectional Relationshipscccccovveviinnnnee. 24

DYNAMIC QUETIES ...ivtiiiiii et ee et e e e e e e e e e e e e et e e et e e et eeaneeanns 24

USING WIlACAITSeiiiii e 25
PagINAtIONiiiii e 25
Pagination eXamplecocoiiiiiii 26

Query Meta-Parametersooouiiiiiiiiic e 27

3.4.1.4. RelAtiONSNIPS .euuiiiiiiii e 27

N:1 and 1:1 RelationNShipsoiiiiiiii e 27

1:n and n:m RelationShipsooviiiiiii e 28

Eager vS. Lazy LOAdiNgiviiiiiiiiiiii e 29
Cascading Relationshipscocuiiiiiiiiii e 29

3.4.1.5. EMbeddable ... 30
I I G T] 1=) = Vg o7 31
3.4.1.7. ConcurrenCy CONIOlccouuiiiiii i 32
OPLIMISIC LOCKING ...eieiiiiieii e e 32
PeSSIMISHIC LOCKING ...ivviiiiiiii e 33

3.4.1.8. Database AUAItINGoiiiiiiiiii e 33
3.4.1.9. Testing Entities and DAOSocoiuiiiiiiiiiieeei et 33

I O o ol o = PP 33
3.4.2. Database Configurationcooceuiiiiiii i 34
3.4.2.1. Database System and ACCESScccuuuiiiiirinieiiiiiiieeeiie e 34
3.4.2.2. Database MiIgratiOnccoouuiiiiiiiieeiii et ene e 34
3.4.2.3. Database LOGQiNGceuuiiiiiieiiieeii e e e e 34
Bi.3. SECUIMLY ittt ettt et e s 34
3.4.3. 1. SQL-INJECLION ittt e e e et e e 34
3.4.3.2. Limited Permissions for Applicationc.cccoveiiiiiiiiiieiiie e, 35

3.5, BAICN LAYEK ..eniiiii ettt 36
3.5.1. BatCh @rChiteCtUIEiiiiiieii e e e e e eens 36
LS A I I =1 1o PPN 36
Accessing data aCCESS IAYEIcccuuuiiiiiii e 36

3.5.1.2. Batch administration and @XeCULIONcocvuuieveiieiiiiieeiie e e eeen 36
Starting and Stopping BatChescccciiiiiiiiiii e 36

Starting @ Batch JODoiiii 37

JODNBIME L. e 37

SEOPPING @ JOD oo 38
SCREAUIING ...t et et e et e e eee 38

3.5.2. IMPIEMENTALION ...t et 38
3.5.2.1. Main ChalleNgEScccvuiiiiiiiiie e e 38
Transaction handlingccoouiiiiiii e 38

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). iii

Open Application Standard Platform for Java V2.3.0

Restarting BatChesoooiuiiiiiiiii e 39

Exception handling in BatChesccoiiiiiiiiiiiii e 39
PerfOrmanCe ISSUESouuuuiiiiiie it 39

3.5.2.2. SEIUPD .oiiiiii it 40

[1= 1 L=] 40

Failure iNfOrmationcooveeeiiiiiiie e 40

General CoNfIQUIALIONcoiiiiiiiiii e 40

3.5.2.3. EXample-BatChccooouiiiii 41
3.5.2.4. RESIAIS ..ot 43
3.5.2.5. ChUNK PrOCESSING ...evuuiiiiiiiiiiiii et 44

10T] ST To [44

CaACKING conii e 45

Reading from Transactional QUEUESc.uuiveiiiiinieiiiiinieeeiiieeeneen, 45

Reading from the Databasecooiiiiiiiiiiii e, 45

Reading from Filescoooiuiiiiii i 46

EEMIPTOCESSON ... it e et e aaas 47
10T)T (= P 47

Writing to Database or Transactional QUEUESccoeevveiiiieiinennnnn. 48

WItING 10 FIlES e 48

Saving and ReStOriNg Stateovviiiiiiiiiiiieee e 48

3.5.2.6. Tasklet based ProCeSSINGccccuiiiiiieiiiieiiii e e e e e e e 49
3.5.2.7. Exception HaNdliNGcoouuiiiiiiiiicii e 50
SKIDPING et 50

=] 1Y/ o TN 51

T2 S B I 11 (= = P 52
3.5.2.9. ParamelerS ..ouiiiiiii i 53
3.5.2.10. Performance TUNINGcccouuieiiiieiiiieeiie e e e e e e e e et e et e e eaeeeens 54
35,2, 11, TESHING eeeetnieeeeit ettt ettt ettt ettt e et ettt e e e e e e eee 55
Testing BatCh JODSoiiiii 55

Testing Individual StEPSccvuiiiiiiiii e 56

Validating Output Files ..o 56

TESHNG RESLAMSuiiiiiiie i 56

I €1 0T [PPSR 57
4.1. DependenCy INJECLIONuu ittt ettt ettt ettt et et et et e e e rae e e eneas 57
4.1.1. KEY PIINCIPIES et 57
O N = 14] o] (ST ==Y L N 58
4.1.3. Bean CONFIQUIALIONuiiiiitieeiiie ettt e e 58
4.2, CONFIQUIALION ...t ettt e et e e et e eeeaba s 59
4.2.1. Internal Application Configurationooiiiiiiiiii e e 59
4.2.1.1. Spring Boot APPlICALIONco.uuiiiiiiieieii e 59
4.2.1.2. Standard beans configurationccoooeiiiiiiiiiii e 59
4.2.1.3. XML-based beans configurationc.cccoiiiiiiiiiiiii e 60
4.2.1.4. Batch configurationco.uiiiiiiiiiii e 60
4.2.1.5. Security CONfIQUIALIONiiiiiiiiiii e 60
4.2.1.6. WebSocket configurationc.couiiiiiiiiiiii e 60
4.2.1.7. Database Configurationooieiiiiiiieiiii e 61
4.2.2. Externalized ConfiguIationoiiiiiiiiiiiii e 61
4.2.2.1. Environment Configurationccoooiuiieiiiiiiin e 61
4.2.2.2. BUSIiNess Configurationccouuiiiiiiiioieiii e 62

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). iv

Open Application Standard Platform for Java V2.3.0

e T o o o {1 o o PO PPPPT TP PPPRTTUPPPRTN 63
.30, USBOE .oeniiriieiii ettt ettt e e e 63
4.3.1.1. Maven INtEQrationc..oeiiiiieiiee e e e e e e e e e et eean s 63

4.3.1.2. CONFIGQUIALION .eoettiiiiii ettt eeeeas 63

4.3.1.3. LOQUEI ACCESS ...ueeuniiitieiti ettt ettt et e e e et et e e e e e e 63

O Tt 0 o 1o VA o [T PP 63

4.3.2. OPEIALIONSiieiti ettt ettt et ettt et 64
4.3.2.1. LOG FlES oo 64

e B © 11 1 11 | A {0 1 = | 65

4.3.3. SECUIMEY ettueeeiit ettt e e e et e e et e e et e e e e e 65
4.3.4. Correlating Separate reQUESESuuiiiiiii e 65
= Yo 0| 1 67
4.4.1. Vulnerabilities and ProteCtioncooeeuiiiiiiiiii e 67
S I o T | 68
4.4.2.1. Dependency ChECKccciuiiiiiiiiii e e e e e e 68

4.4.2.2. Penetration TeSHNGveiiiriieiiiiie ettt eeeeas 68

T Ao o =17 0] 11 (o] 69
4.5.1. AUNENTICALION ..uiiiiiiiiee et e e et e e et r e e e e e e e eaeaeaees 69
4.5.1.1. MECRANISIMS ...ttt e e e e et e e e e ea s 69

2T [P 69

o)1 1 T 10T 1o 70

4.5.1.2. Preserve original request anchors after form login redirect 70

4.5.1.3. USEIS VS. SYSIEMS ...eriiiiiieiii ettt ettt et et e e e e e e enes 71

N AT | T] g4 1110] ISP 71
4.5.2.1. Clarification Of terMSooieiiii e 71

4.5.2.2. Suggestions on the access Modelocooviiiiiiiiiiiiii 72

4.5.2.3. 0ASPAJ-SECUILY .vuuiiiieiii et e et e et e e e e e e e e e e et e e et e e et e e st e e e aaeeaaaees 72

Access Control SChEMA ... 73

Configuration on URL [eVelcoouuiiiii e 75

Configuration on Java Method levelcccooiiiiiiiii e, 75

Check Data-based PermisSionsoociuiiiiiiiiiiie e 76

T - 1 o - 1o T o 77
4.6.1. Stateless Validationcooiiiiiiiiiiiiie e aee 77
4.6.1.0. EXAMPIE ..ot 77

4.6.1.2. GUI-INLEGIAtIONvuiiiiiii ettt e eees 78

4.6.1.3. Cross-Field Validationc.coovuuiiiiiiiiiieeciieeee e 78

4.6.2. Stateful Validation ..o 78

o N o 1110 Vo T PP P 79
4.8. Aspect Oriented Programming (AOP)iiiiiiiiiiiiii e e e e e 80
4.8.1. AOP KeY PIINCIPIESeuiiiiiiiieiei e 80
4.8.2. AOP USAQE ...iiiiiiiiieiit ettt 80
I TRC T X @] 1= o 1 T T[] Vo 80

4.9. EXCePLioN HANAIINGcoouiiiiiiiiiee ettt 83
4.9.1. EXCepPLion PrINCIPIESuuniiiiiiieii e 83
4.9.2. EXCEPLioN EXAMPIEciiiiiiii e 83
4.9.3. Handling EXCEPLIONSuiiiiiiieiiiii ettt ettt 84
4.70. INterNatioN@lIZALIONiii e e 85
4.10.1. Binding locale information to the USErcocoiiiiiiiiii e, 85
4.10.2. Getting internationalizated MESSAGEScceuvuiiiiiiiiiieiiii e 85

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). \

Open Application Standard Platform for Java V2.3.0

4.11.

4.12.

4.13.

4.14.

4.15.

D TP SUOPPPPTRIN 87
4110, JAXB e 87
4.11.1.1. JAXB and INNEMANCEcouviiiiiiieeiiiiii e e 87
4.11.1.2. JAXB CUSLOM MaAPPING .. eiiitniiiiiiieeeeii et 87

B 1 88
4.12.1. Configure JSON MapPPinNgoeeuuiiiiineeiiiieeiie e e e e e e e e e s e e e et e eeaeaeenaaes 88
4.12.2. JSON and INNEILANCEc.uuiiiiieei e e e an s 88
4.12.3. JSON CUSLOM MAPPING . ertnnitiiiiietiii ettt e et e et e e eana s 89
R S T ittt ettt et e e et 91
Z.13.1. URLS ittt e et e e et e e e e et bbb e e e e e e eaaraas 91
T T o I I Y/ =11 T o £ P 91
4.13.3. HTTP StAtUS COUESieeiiiiiiiiiiie ettt sttt e e et et e e e e e enaenenas 92
T Y 11 = To - | - L PP 93
4 3. 0. JAX RS i e 93
4.13.5.1. JAX-RS Configurationcoeiiuiiiiiiiiiiie e ee e 94
4.13.6. REST Exception HandliNgcoouuiiiiiiiiieiii et 94
4.13.7. Recommendations for REST requests and reSpOoNSEScovvvveviiieeiiiinnenennnnnn. 94
4.13.7.1. Unparameterized loading of a single resourcecccoccceveviiiieiiineinnnnns 95
4.13.7.2. Unparameterized loading of a collection of resourcesccccceeeeeees 95
4.13.7.3. SAVING @ FESOUICE ...ueieeiinieteitieeteii e et e e et e e et e e e et e e e et e e aatan s 95
4.13.7.4. Parameterized loading of @ reSOUICEc.ccuvveiiiiiiiiiiiiii e 96
Pagination detailSoiiiiiiiiiii e 97

4.13.7.5. Deletion Of & FESOUICEuiiiiiiiiieiii e 97
4.13.7.6. EITOF TESUILS .viiiiiii ettt ettt e e e e eennees 97
4.13.8. REST MEAIA TYPES ..otuiiiiitiieeiiit ettt ettt ettt et e e e e et e eeeen s 97
4.13.9. REST TESHNG oeettiiiiiiii ettt e et e e e e 98
e T O ST =T o U PP PP S PP PT PP 98
4.13.10.1. CSRE et e 98
4.13.10.2. JSON tOp-1eVEl AITAYS ...coevviiiiiiii e 98
SO A P et e ettt e e aeeenaae 99
A.LA L. JAX-WWS e et 99
4.14.2. SOAP CUSIOM MAPPING «.evnniiiiineetiii ettt e et e e et eeeaan s 99
4.14.3. SOAP TESHUNG ..cttieeitiiiiii ettt ettt e e e e et e e e e e e e s e e err b e e e e e eeeennnees 99
LIS (] T PP PP PPPPTT 101
4.15.1. General DESt PraCtiCeS ...c..uuiiiiiiiieie e 101
4.15.2. Test Automation Technology Stackccooeiiiiiiiiiiiiin e, 101
4.15.3. TSt DOUDIES ... e e 102
4.15.3. 1. StUDS oeeii i 102
4.15.3.2. MOCKS ettt 102
4.15.3.3. WIFEMOCK ..eeiieiie e e 103
4.15.4. INtegration LEVEIScoveiii i 103
4.15.4.1. Level 1 MOdUIE TeSE ..cciiiiiiiiiiiiie e 104
4.15.4.2. Level 2 ComMPONENnt TESEuuiiiiiiieeiiiii et 105
4.15.4.3. Level 3 SUDSYSIEM TS .covuuiieiiiiie et 105
4.15.4.4. Level 4 SYStEmM TeST ...iiuiiiiii e 105
4.15.4.5. Classifying Integration-LeVvelsc.ooiiiiiiiiiiiiiii e 105
4.15.5. IMPIEMENTALION ..uuiiiiii e e e e ettt e e et e e eaa e eeees 105
4.15.5.1. MOAUIE TESL ...iiiiiiiiii ettt 105
4.15.5.2. COMPONENT TS .euiiiiiiiii e e 107

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). Vi

Open Application Standard Platform for Java V2.3.0

4.15.5.3. SUDSYSIEM TEST ..uuiiiiiiii e 108
4.15.5.4., SYSIEIM TS .iriiiiiiieii et 109
4.15.5.5. HOW 1O run test IEVEISuuiiiiiiiiiiiiiee e 109
4.15.6. Deployment PIPEliNecoouuiiiiiiiii e e 110
4.15.7. TESE COVEIAGE . .cvuieirieiei ettt ettt et e et e et e e eaa s 110
4.15.8. Test COoNfIQUIALIONciiuiiiii e e e e e ean s 110
4.15.8.1. Configure Test SPeCific BEANScccuuuiiiiiiiiiiiiiiiieeeei e 110
4.15.8.2. TESE DALA ..uoevniieieitiei et 111
T TR 1= o 18 o o o [=TS £ 111
4.15.9.1. Debugging with the IDE ... 111
4.15.9.2. Debugging With MaVENccooiiiiiiiii e 111
O T I = Vg) (=1 RO o=t £ 113
4.16.1. Business-Transfer-ODJECTScoivuiiiiiiiiie e 113
4.16.2. Service-Transfer-ObJECTSc.uuiiiiiii e 114
o S 1= Y- a1V =T o] o [115
4.17.1. Bean-Mapper DEPENUENCYuiiiriieiiiiie ettt 115
4.17.2. BEaN-MAPPEN USATEuiieiiiiiiiiiii ettt ettt et e e e e 115
.18, DaAlAtYPES ivuieniiiiieiii ettt ans 116
4.18.1. Datatype PaCKaGINGoceeuriieiiiiiieee ettt e e 116
o T = Tod o 1 Tor= L O o] g o= 1 117
4.18.3. Datatypes iN ENItIESoiuiiiiii i 117
4.18.4. Datatypes in Transfer-ObJECTSoiiiiiiiiiii e 117
A L84 L. XML i 117
4.18.4.2. JSON .ot 117
4.19. Transaction HaNAliNGoooiiiiiiii e 118
e B I = - (o] = 118
.20, SO it 119
4.20.1. Naming CONVENTIONScceutiiiiiiineeeiii ettt e e e e e e e e e e e e eenans 119
O 5t R 1 PP 119
4.20.1.2. DAEA .eevvneieeiii et 120
4.21. ACCESSIDIIILY ...ttt 121
4.22. CORS SUPPOIT 1.ttt ettt ettt ettt e e et et et et e e e e e e e ena s 122
4.22.1. Configuring CORS SUPPOIT . .cuuiiiiiieiiieeii e e e e e e e e e e e e e eaans 122
4.23. BLOB SUPPOIT ...ttt ettt ettt e e et e e e e e 123
2 T I [o o 11 o3 1T o 123
4.23.2. Implementing BLOB support: an eXxampleccooiiieiiineiiiiecineeneeeeeee e 123
4.23.2. 1. LOGIC LAYET .. 123
4.23.2.2. SEIVICE LAYET .uiiiiiiiii ettt 123
4.23.3. FUurther REAAINGcooviiiiiii e e e 124

This documentation is licensed under the

Creative Commons License (Attribution-
NoDerivatives 4.0 International). vii

Open Application Standard Platform for Java V2.3.0

Introduction

The Open Application Standard Platform (OASP) provides a solution to building applications which
combine best-in-class frameworks and libraries as well as industry proven practices and code
conventions. It massively speeds up development, reduces risks and helps you to deliver better results.

This document contains the complete compendium of the Open Application Standard Platform for Java
(OASP4J). From this link you will also find the latest release or nightly snapshot of this documentation.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

viii

http://oasp.io
http://oasp.io/oasp4j
http://oasp.io/oasp4j

Open Application Standard Platform for Java V2.3.0

1. Architecture

There are many different views on what is summarized by the term architecture. First we introduce the
key principles and architecture principles of the OASP. Then we go into details of the the architecture

of an application.

1.1 Key Principles

For the OASP we follow these fundamental key principles for all decisions about architecture, design,
or choosing standards, libraries, and frameworks:

KISS
Keep it small and simple

Open
Commitment to open standards and solutions (no required dependencies to commercial or vendor-
specific standards or solutions)

Patterns
We concentrate on providing patterns, best-practices and examples rather than writing framework
code.

Solid
We pick solutions that are established and have proved to be solid and robust in real-live (business)
projects.

1.2 Architecture Principles

Additionally we define the following principles that our architecture is based on:

Component Oriented Design
We follow a strictly component oriented design to address the following sub-principles:

* Separation of Concerns

« Reusability and avoiding redundant code

 Information Hiding via component API and its exchangeable implementation treated as secret.

« Design by Contract for self-contained, descriptive, and stable component APIs.
» Layering as well as separation of business logic from technical code for better maintenance.

< Data Sovereignty (and high cohesion with low coupling) says that a component is responsible for
its data and changes to this data shall only happen via the component. Otherwise maintenance
problems will arise to ensure that data remains consistent. Therefore interfaces of a component
that may be used by other components are designed call-by-value and not call-by-reference.

Homogeneity
Solve similar problems in similar ways and establish a uniform code-style.

1.3 Application Architecture

For the architecture of an application we distinguish the following views:

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 1

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Redundant_code
http://en.wikipedia.org/wiki/Information_hiding

Open Application Standard Platform for Java V2.3.0

* The Business Architecture describes an application from the business perspective. It divides the
application into business components and with full abstraction of technical aspects.

» The Technical Architecture describes an application from the technical implementation perspective.
It divides the application into technical layers and defines which technical products and frameworks
are used to support these layers.

» The Infrastructure Architecture describes an application from the operational infrastructure
perspective. It defines the nodes used to run the application including clustering, load-balancing and
networking. This view is not explored further in this guide.

1.3.1 Business Architecture

The business architecture divides the application into business components. A business component
has a well-defined responsibility that it encapsulates. All aspects related to that responsibility have
to be implemented within that business component. Further the business architecture defines the
dependencies between the business components. These dependencies need to be free of cycles.
A business component exports his functionality via well-defined interfaces as a self-contained API.
A business component may use another business component via its APl and compliant with the
dependencies defined by the business architecture.

As the business domain and logic of an application can be totally different, the OASP can not define a
standardized business architecture. Depending on the business domain it has to be defined from scratch
or from a domain reference architecture template. For very small systems it may be suitable to define
just a single business component containing all the code.

1.3.2 Technical Architecture

The technical architecture divides the application into technical layers based on the multilayered
architecture. A layer is a unit of code with the same category such as service or presentation logic. A
layer is therefore often supported by a technical framework. Each business component can therefore
be split into component parts for each layer. However, a business component may not have component
parts for every layer (e.g. only a presentation part that utilized logic from other components).

An overview of the technical reference architecture of the OASP is given by figure "Technical Reference
Architecture". It defines the following layers visualized as horizontal boxes:

« client layer for the front-end (GUI).

 service layer for the services used to expose functionality of the back-end to the client or other
consumers.

* batch layer for exposing functionality in batch-processes (e.g. mass imports).
* logic layer for the business logic.

» data-access layer for the data access (esp. persistence).

Also you can see the (business) components as vertical boxes (e.g. A and X) and how they are
composed out of component parts each one assigned to one of the technical layers.

Further, there are technical components for cross-cutting aspects grouped by the gray box on the left.
Here is a complete list:

» Security

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 2

http://en.wikipedia.org/wiki/Multilayered_architecture
http://en.wikipedia.org/wiki/Multilayered_architecture

Open Application Standard Platform for Java V2.3.0

* Loggin

* Monitoring

* Transaction-Handling

» Exception-Handling

» |nternationalization

» Dependency-Injection

Figure 1.1. Technical Reference Architecture

We reflect this architecture in our code as described in our coding conventions allowing a traceability of
business components, use-cases, layers, etc. into the code and giving developers a sound orientation
within the project.

Further, the architecture diagram shows the allowed dependencies illustrated by the dark green
connectors. Within a business component a component part can call the next component part on the
layer directly below via a dependency on its API (vertical connectors). While this is natural and obvious it
is generally forbidden to have dependencies upwards the layers or to skip a layer by a direct dependency
on a component part two or more layers below. The general dependencies allowed between business
components are defined by the business architecture. In our reference architecture diagram we assume
that the business component X is allowed to depend on component A. Therefore a use-case within the
logic component part of X is allowed to call a use-case from Avia a dependency on the component API.
The same applies for dialogs on the client layer. This is illustrated by the horizontal connectors. Please
note that persistence entities are part of the API of the data-access component part so only the logic
component part of the same business component may depend on them.

The technical architecture has to address non-functional requirements:

 scalability
is established by keeping state in the client and making the server state-less (except for login session).
Via load-balancers new server nodes can be added to improve performance (horizontal scaling).

 availability and reliability
are addressed by clustering with redundant nodes avoiding any single-point-of failure. If one node
fails the system is still available. Further the software has to be robust so there are no dead-locks or
other bad effects that can make the system unavailable or not reliable.

e security
is archived in the OASP by the right templates and best-practices that avoid vulnerabilities. See
security guidelines for further details.

» performance
is obtained by choosing the right products and proper configurations. While the actual implementation
of the application matters for performance a proper design is important as it is the key to allow
performance-optimizations (see e.g. caching).

1.3.2.1 Technology Stack

The technology stack of the OASP is illustrated by the following table.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 3

Open Application Standard Platform for Java V2.3.0

Table 1.1. Technology Stack of OASP

Topic Detail Standard Suggested
implementation

runtime language & VM Java Oracle JDK

runtime servlet-container JEE tomcat

component dependency injection JSR330 & JSR250 spring

management

configuration framework - spring-boot

persistence OR-mapper JPA hibernate

batch framework JSR352 spring-batch

service SOAP services JAX-WS CXF

service REST services JAX-RS CXF

loggin framework slf4j logback

validation framework beanvalidation/JSR303 hibernate-validator

security Authentication & JAAS spring-security
Authorization

monitoring framework JMX spring

monitoring HTTP Bridge HTTP & JSON jolokia

AOP framework dynamic proxies spring AOP

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

http://tomcat.apache.org/
https://jcp.org/en/jsr/detail?id=330
https://jcp.org/en/jsr/detail?id=250
http://spring.io/
http://projects.spring.io/spring-boot/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://hibernate.org/orm/
https://jcp.org/en/jsr/detail?id=352
http://projects.spring.io/spring-batch/
https://jcp.org/en/jsr/detail?id=224
http://cxf.apache.org/
https://jax-rs-spec.java.net/
http://cxf.apache.org/
http://www.slf4j.org/
http://logback.qos.ch/
http://beanvalidation.org/
http://hibernate.org/validator/
http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://projects.spring.io/spring-security/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://spring.io/
http://www.jolokia.org
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html
http://docs.spring.io/autorepo/docs/spring/3.0.6.RELEASE/spring-framework-reference/html/aop.html

Open Application Standard Platform for Java V2.3.0

2. Coding

2.1 Coding Conventions

The code should follow general conventions for Java (see Oracle Naming Conventions, Google Java
Style, etc.).We consider this as common sense and provide configurations for SonarQube and related
tools such as Checkstyle instead of repeating this here.

2.1.1 Naming

Besides general Java naming conventions, we follow the additional rules listed here explicitly:

» Always use short but speaking names (for types, methods, fields, parameters, variables, constants,
etc.).

» Avoid having duplicate type names. The name of a class, interface, enum or annoation should be
unique within your project unless this is intentionally desired in a special and reasonable situation.

» Avoid artificial naming constructs such as prefixes (I *) or suffixes (* | F) for interfaces.
» Use CamiCase even for abbreviations (Xm Ut i | instead of XMLUt i |)

» Names of Generics should be easy to understand. Where suitable follow the common rule
E=El enent , T=Type, K=Key but feel free to use longer names for more specific cases such as | D,
DTOor ENTI TY. The capitalized naming helps to distinguish a generic type from a regular class.

2.1.2 Packages

Java Packages are the most important element to structure your code. We use a strict packaging
convention to map technical layers and business components (slices) to the code (See technical
architecture for further details). By using the same names in documentation and code we create a strong
link that gives orientation and makes it easy to find from business requirements, specifications or story
tickets into the code and back. Further we can use tools such as SonarQube and SonarGraph to verify
architectural rules.

For an OASP based application we use the following Java-Package schema:

<r oot package>. <appl i cati on>. <conponent >. <| ayer >. <scope>[. <det ai | >] *

E.g. in our example application we find the DAO interfaces for the sal esmanagenent component in
the package i 0. oasp. gastronony. r est aur ant . sal esnanagenent . dat aaccess. api . dao

Table 2.1. Segments of package schema

Segment Description Example

<rootpackage> Is the basic Java Package i 0. oasp. gastronony
name-space of the organization

or IT project owning the

code following common

Java Package conventions.

Consists of multiple segments

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 5

http://www.oracle.com/technetwork/java/namingconventions-139351.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://www.sonarqube.org/
http://checkstyle.sourceforge.net/
http://www.sonarqube.org/
http://www.hello2morrow.com/products/sonargraph

Open Application Standard Platform for Java V2.3.0

Segment Description Example

corresponding to the Internet
domain of the organization.

<application> The name of the application rest aur ant
build in this project.

<component> The (business) component the sal esmanagenent
code belongs to. It is defined

by the business architecture

and uses terms from the

business domain. Use the

implicit component gener al for

code not belonging to a specific

component (foundation code).

<layer> The name of the technical layer dat aaccess
(See technical architecture)

which is one of the predefined

layers (dat aaccess, | ogi c,

servi ce, bat ch, gui ,

cl i ent) or conmon for code

not assigned to a technical

layer (datatypes, cross-cutting

concerns).

<scope> The scope which is one of api api
(official API to be used by other
layers or components),base

(basic code to be reused by

other implementations) and

i mpl (implementation that

should never be imported from
outside)

<detail> Here you are free to further dao
divide your code into sub-
components and other

concerns according to the size

of your component part.

Please note that for library modules where we use i 0. oasp. nodul e as <basepackage> and the
name of the module as <conponent >. E.g. the API of our beanmappi ng module can be found in the
package i 0. oasp. nodul e. beanmappi ng. common. api .

2.1.3 Code Tasks

Code spots that need some rework can be marked with the following tasks tags. These are already
properly pre-configured in your development environment for auto completion and to view tasks you are
responsible for. It is important to keep the number of code tasks low. Therefore every member of the
team should be responsible for the overall code quality. So if you change a piece of code and hit a code
task that you can resolve in a reliable way do this as part of your change and remove the according tag.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 6

Open Application Standard Platform for Java V2.3.0

2.1.3.1 TODO

Used to mark a piece of code that is not yet complete (typically because it can not be completed due
to a dependency on something that is not ready).

/1 TODO <aut hor> <descri pti on>

A TODO tag is added by the author of the code who is also responsible for completing this task.

2.1.3.2 FIXME

/1 FI XME <aut hor> <descri pti on>

A FIXME tag is added by the author of the code or someone who found a bug he can not fix right now.
The <author>who added the FIXME is also responsible for completing this task. This is very similar to a
TODO but with a higher priority. FIXME tags indicate problems that should be resolved before a release
is completed while TODO tags might have to stay for a longer time.

2.1.3.3 REVIEW

/'l REVI EW <r esponsi bl e> (<revi ewer>) <description>

A REVIEW tag is added by a reviewer during a code review. Here the original author of the code is
responsible to resolve the REVIEW tag and the reviewer is assigning this task to him. This is important
for feedback and learning and has to be aligned with a review "process" where people talk to each other
and get into discussion. In smaller or local teams a peer-review is preferable but this does not scale
for large or even distributed teams.

2.1.4 Code-Documentation

As a general goal the code should be easy to read and understand. Besides clear naming the
documentation is important. We follow these rules:

» APIs (especially component interfaces) are properly documented with JavaDoc.

» JavaDoc shall provide actual value - we do not write JavaDoc to satisfy tools such as checkstyle but
to express information not already available in the signature.

* We make use of { @i nk} tags in JavaDoc to make it more expressive.

» JavaDaoc of APIs describes how to use the type or method and not how the implementation internally
works.

» To document implementation details, we use code comments (e.g. // we have to flush
explicitly to ensure version i s up-to-date). Thisis only needed for complex logic.

2.1.5 Code-Style
This section gives you best practices to write better code and avoid pitfalls and mistakes.
2.1.5.1 BLOBs

Avoid using byt e[] for BLOBs as this will load them entirely into your memory. This will cause
performance issues or out of memory errors. Instead use streams when dealing with BLOBs. For further
details see BLOB support.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 7

Open Application Standard Platform for Java V2.3.0

2.1.5.2 Closing Resources

Resources such as streams (I nput St r eam Qut put St r eam Reader , Wi t er) or transactions need
to be handled properly. Therefore it is important to follow these rules:

» Each resource has to be closed properly, otherwise you will get out of file handles, TX sessions,
memory or the like

* Where possible avoid to deal with such resources manually. That is why we are recommending
@ransact i onal for transactions in OASP (see Transaction Handling).

 In case you have to deal with resources manually (e.g. streams) ensure to close them properly. See
the example below for details.

Closing streams and other such resources is error prone. Have a look at the following example:

try {
Input Streamin = new Fil el nput Strean(file);

readData(in);
in.close();
} catch (1 CException e) {
t hrow new Runti nel oException(e, |oMde. READ);

}

The code above is wrong as in case of an | OExcept i on the | nput St r eamis not properly closed. In
a server application such mistakes can cause severe errors that typically will only occur in production.
As such resources implement the Aut oCl oseabl e interface you can use the try-wi t h-resource
syntax to write correct code. The following code shows a correct version of the example:

try (InputStreamin = new FilelnputStrean(file)) {
readDat a(in);

} catch (1 COException e) {
throw new Runti nel oException(e, |oMde. READ);

}

2.1.5.3 Lambdas and Streams

With Java8 you have cool new feautres like lambdas and monads like (St r eam Conpl et abl eFut ur e,
Opt i onal , etc.). However, these new features can also be misused or lead to code that is hard to read
or debug. To avoid pain, we given you the following best practices:

1. Learn how to use the new features properly before using. Often developers are keen on using cool
new features. When you do your first experiments in your project code you will cause deep pain and
might be ashamed afterwards. Please study the features properly. Even Java8 experts still write for
loops to iterate over collections, so only use these features where it really makes sense.

2. Streams shall only be used in fluent API calls as a Stream can not be forked or reused.
3. Each stream has to have exactly one terminal operation.
4. Do not write multiple statements into lambda code:

col l ection.strean().map(x -> {
Foo foo = doSoret hi ng(x);

return foo;
}).collect(Coll ectors.toList());

This style makes the code hard to read and debug. Never do that! Instead extract the lambda body
to a private method with a meaningful name:

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 8

Open Application Standard Platform for Java V2.3.0

col I ection.streanm().map(this::convertToFoo).collect(Collectors.toList());

applications or for code that is just processing large amounts of data.

6. Do not perform operations on a sub-stream inside a lambda:

set.strean().flatMap(x ->

x.getChildren().stream().filter(this::isSpecial)).collect(Collectors.toList()); // bad

set.strean().flat Map(x ->

. Do not use paral | el Strean() in general code (that will run on server side) unless you know
exactly what you are doing and what is going on under the hood. Some developers might think that
using parallel streams is a good idea as it will make the code faster. However, if you want to do
performance optimizations talk to your technical lead (architect). Many features such as security and
transactions will rely on contextual information that is associated with the current thread. Hence,
using parallel streams will most probably cause serious bugs. Only use them for standalone (CLI)

x.getChildren().strean()).filter(this::isSpecial).collect(Collectors.toList()); // fine

7. Only use col | ect and the end of the stream:

set.strean().collect(Collectors.toList()).forEach(...) // bad
set.strean().peek(...).collect(Collectors.toList()) // fine

8. Lambda parameters with Types inference

(a,b,c) ->a.toString() + Float.toString(b) + Arrays.toString(c) // fine
(String a, Float b, Byte[] c) -> a.toString() + Float.toString(b) + Arrays.toString(c)

Col | ections. sort(personList, (pl, p2) -> pl.getSurName().conpareTo(p2.getSurNanme()));

Col | ections. sort (personList, (Person pl, Person p2) -> pl.get SurNanme().conpareTo(p2.getSurNanme()));

/I bad

9. Avoid Return Braces and Statement

(a) -> a.toString(); Il fine
(a) -> { return a.toString(); } //bad

/I bad

/1fine

10Avoid Parentheses with Single Parameter

a -> a.toString(); // fine
(a) -> a.toString(); //bad

11Avoid if/else inside foreach method. Use Filter method & comprehension

Bad

final List result = new ArrayList<String> ();
foreach (Author a : authors) {
if (a.Conpany. equl as(conpany)) {
String handle = a. Twi tterHandl e;
if (handle !'= null)
resul t. Add(handl e) ;
}
}

return result;

static public Iterator<String> Twi tterHandl es(|terator<Author> authors, string conpany) {

Fi ne
public List<String> tw tterHandl es(List<Author> authors, String conpany) {
return authors.strean()
filter(a -> null !'= a && a.get Conpany() . equal s(conpany))
.map(a -> a.getTwi tterHandl e())

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

Open Application Standard Platform for Java V2.3.0

.collect(toList());

2.1.5.4 Optionals

With Opt i onal you can wrap values to avoid a Nul | Poi nt er Except i on (NPE). However, it is not a
good code-style to use Opt i onal for every parameter or result to express that it may be null. For such
case use @Nul | abl e or even better instead annotate @ot Nul | where nul | is not acceptable.

However, Opt i onal can be used to prevent NPEs in fluent calls (due to the lack of the elvis operator):

Long id;

id = fooCto.getBar().getBar().getld(); // may cause NPE

id=

Optional . of Nul | abl e(f ooCt 0) . map(FooCt o: : get Bar) . map(Bar Cto: : get Bar) . map(Bar Eto: : get1d).orEl se(null); //
nul | -safe

2.1.5.5 Encoding

Encoding (esp. Unicode with combining characters and surrogates) is a complex topic. Please study
this topic if you have to deal with encodings and processing of special characters. For the basics follow
these recommendations:

* When you have explicitly decide for an encoding always prefer Unicode (UTF-8 or better). This
especially impacts your databases and has to be defined upfront as it typically can not be changed
(easily) afterwards.

» Do not cast from byt e to char (Unicode characters can be composed of multiple bytes, such cast
may only work for ASCII characters)

» Write your code independent form the default encoding (system property f i | e. encodi ng) - this will
most likely differ in JUnit from production environment

< Always provide an encoding when you create a St ri ng from byte[]: new String(bytes,
encodi ng)

e Always provide an encoding when you create a Reader or Witer : new
| nput St r eanReader (i nSt ream encodi ng)

2.1.5.6 Prefer general API

Avoid unnecessary strong bindings:

» Do not bind your code to implementations such as Vect or or ArraylLi st instead of Li st
* In APIs for input (=parameters) always consider to make little assumptions:

« prefer Col | ecti on over Li st or Set where the difference does not matter (e.g. only use Set
when you require unigueness or highly efficient cont ai ns)

« consider prefering Col | ecti on<? extends Foo> over Col | ecti on<Foo> when Foo is an
interface or super-class

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 10

Open Application Standard Platform for Java V2.3.0

3. Layers

3.1 Client Layer

There are various technical approaches to build GUI clients. The OASP proposes rich clients that
connect to the server via data-oriented services (e.g. using REST with JSON). In general, we have to
distinguish among the following types of clients:

* web clients
* native desktop clients
 (native) mobile clients

Currently, we focus on web-clients. So far we offered a responsive Java Script based client provided by
OASP4js that integrates seamlessly with OASP-server. A separate guide is provided for oasp4js.

3.1.1 JavaScript for Java Developers

In order to get started with client development as a Java developer we give you some hints to get started.
Also if you are an experienced JavaScript developer and want to learn Java this can be helpful. First, you
need to understand that the JavaScript ecosystem is as large as the Java ecosystem and developing a
modern web client requires a lot of knowledge. The following table helps you as experienced developer
to get an overview of the tools, configuration-files, and other related aspects from the new world to
learn. Also it helps you to map concepts between the ecosystems. Please note that we list the tools
recommended by OASP here (and we know that there are alternatives not listed here such as gradle,
grunt, bower, etc.).

Table 3.1. Aspects in JavaScript and Java ecosystem

Topic Aspect JavaScript Java
Programming Language TypeScript (extends Java
JavaScript)
Runtime VM nodejs (or web- jvm
browser)
Dependency- Tool yarn (or npm) maven
Management)]
Config package.json pom.xml
Repository npm repo maven central (repo
search)
Build-Management Taskrunner qulp maven (or more

comparable ant)

Config gulpfile.js (and gul p/ pom.xml (or build.xml)
*)

Clean cmd gulp clean mvn clean

Build cmd yarn install && gulp mvn install (see
build:dist lifecycle)

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 11

https://github.com/oasp/oasp4js
https://www.typescriptlang.org/
https://www.javascript.com/
https://docs.oracle.com/javase/tutorial/
https://nodejs.org/
http://www.oracle.com/technetwork/java/javase/
http://yarnpkg.com/
https://github.com/npm/npm
https://maven.apache.org/
https://docs.npmjs.com/files/package.json
https://maven.apache.org/pom.html
https://www.npmjs.com/
http://repo.maven.apache.org/maven2
https://mvnrepository.com/
https://mvnrepository.com/
http://gulpjs.com/
https://maven.apache.org/
http://ant.apache.org/
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md
https://maven.apache.org/pom.html
https://ant.apache.org/manual/using.html
https://maven.apache.org/plugins/maven-clean-plugin/
https://maven.apache.org/plugins/maven-install-plugin/usage.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

Open Application Standard Platform for Java V2.3.0

Topic

Testing

Code Analysis

Aspect JavaScript Java

Test cmd gulp test mvn test
Test-Tool jasmine junit
Test-Framework karma junit / surefire
Browser Testing PhantomJS Selenium

Extensions

Code Coverage

karma-*, PhantomJs

AssertJ,*Unit and

for browser emulation

karma-coverage (and
remap-istanbul for

spring-test, etc.)
JaCoCo/EclEmma

Development

TypeScript)
IDE MS VS Code or Intellild Eclipse or IntelliJ
Framework Angular (etc.) Spring (etc.)

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

12

http://maven.apache.org/components/surefire/maven-surefire-plugin/
http://jasmine.github.io/
http://junit.org/
https://karma-runner.github.io/
http://junit.org/
http://maven.apache.org/components/surefire/maven-surefire-plugin/
http://phantomjs.org/
http://www.seleniumhq.org/
https://karma-runner.github.io/
http://phantomjs.org/
http://joel-costigliola.github.io/assertj/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/integration-testing.html
https://github.com/karma-runner/karma-coverage
https://github.com/SitePen/remap-istanbul
http://www.eclemma.org/jacoco/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/
https://eclipse.org/downloads/
https://www.jetbrains.com/idea/
https://angularjs.org/
https://spring.io/

Open Application Standard Platform for Java V2.3.0

3.2 Service Layer

The service layer is responsible to expose functionality of the logical layer to external consumers over
a network via technical protocaols.

3.2.1 Types of Services

If you want to create a service please distinguish the following types of services:

» External Services
are used for communication between different companies, vendors, or partners.

* Internal Services
are used for communication between different applications in the same application landscape of the
same vendor.

« Back-end Services
are internal services between Java back-end components typically with different release and
deployment cycles (if not Java consider this as external service).

¢ JS-Client Services
are internal services provided by the Java back-end for JavaScript clients (GUI).

« Java-Client Services
are internal services provided by the Java back-end for a native Java client (JavaFx, EclipseRcp,
etc.).

The choices for technology and protocols will depend on the type of service. The following table gives
a guideline for aspects according to the service types.

Table 3.2. Aspects according to service-type

Aspect External Service Back-end JS-Client Service Java-Client

Service Service
Versioning required required not required not required
Interoperability mandatory not required implicit not required
Recommended SOAP or REST REST REST+JSON REST
Protocol

3.2.2 Versioning

For services consumed by other applications we use versioning to prevent incompatibilities between
applications when deploying updates. This is done by the following conventions:

» We define a version number and prefix it withv' (e.g. “vl).

 If we support previous versions we use that version numbers as part of the Java package defining
the service API (e.g. com f 0o. appl i cati on. conponent . servi ce. api . vl)

» We use the version number as part of the service name in the remote URL (e.g. https://
application. foo.con services/rest/conponent/vl/resource)

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 13

https://application.foo.com/services/rest/component/v1/resource
https://application.foo.com/services/rest/component/v1/resource

Open Application Standard Platform for Java V2.3.0

* Whenever we need to change the API of a service in an incompatible, we create an isolated version
of the service and increment the version (e.g. v2) . In the implementation of different version of the
same service, we can place compatibility code and delegate to the same unversioned use-case of
the logic layer whenever possible.

» For maintenance and simplicity we avoid keeping more than one previous version.
3.2.3 Interoperability

For services that are consumed by clients with different technology, interoperability is required. This is
addressed by selecting the right protocol, following protocol-specific best practices and following our
considerations especially simplicity.

3.2.4 Service Considerations

The term service is quite generic and therefore easily misunderstood. It is a unit exposing coherent
functionality via a well-defined interface over a network. For the design of a service, we consider the
following aspects:

» self-contained
The entire API of the service shall be self-contained and have no dependencies on other parts of the
application (other services, implementations, etc.).

» idem-potent
E.g. creation of the same master-data entity has no effect (no error)

» loosely coupled
Service consumers have minimum knowledge and dependencies on the service provider.

* normalized
complete, no redundancy, minimal

» coarse-grained
Service provides rather large operations (save entire entity or set of entities rather than individual
attributes)

* atomic
Process individual entities (for processing large sets of data, use a batch instead of a service)

» simplicity
avoid polymorphism, RPC methods with uniqgue name per signature and no overloading, avoid
attachments (consider separate download service), etc.

3.2.5 Security

Your services are the major entry point to your application. Hence security considerations are important
here.

See REST Security.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 14

Open Application Standard Platform for Java V2.3.0

3.3 Logic Layer

The logic layer is the heart of the application and contains the main business logic. According to
our business architecture we divide an application into business components. The component part
(see architecture overview) assigned to the logic layer contains the functional use-cases the business
component is responsible for. For further understanding, consult the application architecture.

3.3.1 Component Part

3.3.1.1 Component Part Interface

A component part is accessed through its component part interface. The API of the component part
interface has to be business oriented. This means that all parameters and return types of a method have
to be business transfer-objects, datatypes (String, Integer, MyCustomerNumber, etc.), or collections
of these. The API may only access objects of other business components listed in the (transitive)
dependencies of the declaring business component part.

First we create the interface that contains the method(s) with the business operations documented with
JavaDoc.

There are two ways of designing a component part interface at the logic layer. Depending on the
application’s complexity one of the following approaches should be consistently applied (i.e. you should
not use both approaches within the same application).

» Component Part with Simple Interface
» Component Part Interface with Use Case Decomposition
3.3.1.2 Component Part with Simple Interface

For less complex apps with fairly simple component interfaces (even if it contains many methods,
e.g. several find methods), you put all methods to be exposed directly into a single interface. The
implementation of the component part interface provides all the corresponding methods in one class.

Here is an example of a simple interface:

/**
* ... StaffManagenent.java
*
/
public interface StaffMinagenent {

/**

* @aramid the {@ink StaffMenberEto#getld() ID} of the requested staff menber.

* @eturn The {@ink StaffMenberEto} with the given <code>i d</code> or {@ode null} if no such object
exi sts.

*/

St af f Menber Et o fi ndSt af f Menber (Long id);

/**

* @aramlogin The {@ink StaffMenberEt o#get Nane() |ogi n} of the requested staff nenber.

* @eturn The {@ink StaffMenberEto} with the given <code>l ogi n</code> or {@ode null} if no such
obj ect exists.

*/

St af f Menber Et o fi ndSt af f Menmber ByLogi n(String | ogin);

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 15

Open Application Standard Platform for Java V2.3.0

3.3.1.3 Component Part Interface with Use Case Decomposition

For complex applications, component part interfaces consisting of many different use cases, it is
recommended to further sub-divide it into separate use-case-interfaces to be aggregated in the main
component interface. This sulits for better maintainability.

GUEFindE}rderlmpI (9 UcManageOrderimpl

c N

T LlcFlndDrder <}—— 3 Salesmanagement |——{{ {3 UcManageOrder

(9 Salesmanagementimpl

The component part interface then extends the available use case interfaces to offer a single interface
to the next higher layer, e.g. the service layer. Then, the implementation of the component part interface
holds references to all use cases and only delegates method calls. All business logic and data-layer
access is performed within the implementations of the use cases. Also, if a use case needs to use
functionality of another use case provided by the same layer it will use a reference to the component
part interface and not to the use case itself.

/**
* ... Sal esmanagenent.java
*/
public interface Sal esmanagenent extends UcChangeTable, UcFindBill, UcFindOrder, UcFindOrderPosition,
UcManageBi | |,
UcManageOr der, UcManageOr der Position {

}
1.

/**
* ... UcChangeTabl e.java
*/
public interface UcChangeTabl e {

/**

* UseCase to change fromone {@ink Tabl eEto table} to another. The people sitting at a table are
identified by their

* {@ink OderEto order} that has to be provided as argunent.

*

* @aramorderld the {@ink OderEto order}
* @aram newTabl el d the new {@ink TableEto table} to switch to.
*
/
voi d changeTabl e(l ong orderld, |ong newTabl eld);

3.3.2 Component Implementation

The implementation of the use case typically needs access to the persistent data. This is done by
injecting the corresponding DAO. According to the principle data sovereignty , only DAOs of the same

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 16

Open Application Standard Platform for Java V2.3.0

business component may be accessed directly from the use case. For accessing data from other
components the use case has to use the corresponding component interface. Further, it shall not expose
persistent entities from the persistence layer and has to map them to transfer objects.

Within a use-case implementation, entities are mapped via a BeanMapper to persistent entities. Let’s
take a quick look at some of the StaffManagement methods:

package i 0. oasp. gastronony.restaurant.staffnmanagenent.|ogic.inpl;
public class StaffMinagenent|npl extends Abstract Conponent Facade i npl enents Staff Managenent {

public StaffMenberEto get StaffMenberByLogi n(String |ogin) {
Staf f MenberEntity staffMenber = get StaffMenber Dao(). searchByLogi n(| ogin);
return get BeanMapper (). map(staff Menber, StaffMenberEto. cl ass);

}

public StaffMenberEto get StaffMnber(Login id) {
St af f Menber Entity staffMenber = get St af f Menber Dao() . find(id);
return get BeanMapper (). map(staff Menber, StaffMenber Eto. cl ass);
}
}

As you can see, provided entities are mapped to corresponding business objects (here
StaffMemberEto.class). These business objects are simple POJOs (Plain Old Java Objects) and stored
in:

<package-name-prefix>.<domain>.<application-name>.<component>.api.

The mapping process of these entities and the declaration of the AbstractLayerimpl class are described
here. For every business object there has to be a mapping entry in the src/main/resources/config/app/
common/dozer-mapping.xml file. For example, the mapping entry of a TableEto to a Table looks like this:

<mappi ng>

<cl ass- a>i 0. oasp. gast ronony. rest aur ant . t abl enanagenent . | ogi c. api . Tabl eEt o</ cl ass- a>

<cl ass-b>i 0. oasp. gastronony. rest aur ant . t abl emanagenent . per si st ence. api . entity. Tabl e</ cl ass- b>
</ mappi ng>

Below, a class diagram illustrating the pattern is shown (here: the St af f Managenment business
component):

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 17

Open Application Standard Platform for Java V2.3.0

Service layer Logic layer Data access layer

G o Q)

=<lava Class=> R =<=lava Interfaces=
StafiManagementRestServicelmpl StaffManagement

2

<<Java Class>>

' AbstractComponentFacade
implemenis
i A
' extends
G{{J ava Class>> | | uses o) o-r:«r;J ava Interface>>
StaffiManagementimpl StafiMemberDao

i)

h
. @
implements
.
h
h

<<Java Class>=
ApplicationDag

Fy
extends

<<Java Class>>
StaffMemberDaclmpl

As the picture above illustrates, the necessary DAQO entity to access the database is provided by an
abstract class. Use Cases that need access to this DAO entity, have to extend that abstract class.
Needed dependencies (in this case the staffMemberDao) are resolved by Spring, see here. For the
validation (e.g. to check if all needed attributes of the StaffMember have been set) either Java code or
Drools, a business rule management system, can be used.

3.3.3 Passing Parameters Among Components

Entities have to be detached for the reasons of data sovereignty, if entities are passed among
components or layers (to service layer). For further details see Bean-Mapping. Therefore we are using
transfer-objects (TO) with the same attributes as the entity that is persisted. The packages are:

Persistence Entities <package-name-prefix>.<domain>.<application-
name>.<component>.persistence.api.entity

Transfer Objects(TOs) <package-name-prefix>.<domain>.<application-
name>.<component>.logic.api

This mapping is a simple copy process. So changes out of the scope of the owning component to any
TO do not directly affect the persistent entity.

3.3.4 Security

The logic layer is the heart of the application. It is also responsible for authorization and hence security
is important here. Every method exposed in an interface needs to be annotated with an authorization

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 18

http://www.jboss.org/drools/

Open Application Standard Platform for Java V2.3.0

check, stating what role(s) a caller must provide in order to be allowed to make the call. The authorization
concept is described here.

3.3.4.1 Direct Object References

A security threat are Insecure Direct Object References. This simply gives you two options:

 avoid direct object references at all
 ensure that direct object references are secure

Especially when using REST, direct object references via technical IDs are common sense. This implies
that you have a proper in place. This is especially tricky when your authorization does not only rely on the
type of the data and according static permissions but also on the data itself. Vulnerabilities for this threat
can easily happen by design flaws and inadvertence. Here is an example from our sample application:

We have a generic use-case to manage BLOBSs. In the first place it makes sense to write a generic REST
service to load and save these BLOBs. However, the permission to read or even update such BLOB
depend on the business object hosting the BLOB. Therefore, such a generic REST service would open
the door for this OWASP A4 vulnerability. To solve this in a secure way, you need individual services
for each hosting business object to manage the linked BLOB and have to check permissions based on
the parent business object. In this example the ID of the BLOB would be the direct object reference and
the ID of the business object (and a BLOB property indicator) would be the indirect object reference.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 19

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

Open Application Standard Platform for Java V2.3.0

3.4 Data-Access Layer

The data-access layer is responsible for all outgoing connections to access and process data. This is
mainly about accessing data from a persistent data-store but also about invoking external services.

3.4.1 Persistence

For mapping java objects to a relational database we use the Java Persistence APl (JPA). As JPA
implementation we recommend to use hibernate. For general documentation about JPA and hibernate
follow the links above as we will not replicate the documentation. Here you will only find guidelines and
examples how we recommend to use it properly. The following examples show how to map the data
of a database to an entity. As we use JPA we abstract from SQL here. However, you will still need a
DDL script for your schema and during maintenance also database migrations. Please follow our SQL
guide for such artefacts.

3.4.1.1 Entity

Entities are part of the persistence layer and contain the actual data. They are POJOs (Plain Old Java
Objects) on which the relational data of a database is mapped and vice versa. The mapping is configured
via JPA annotations (javax.persistence). Usually an entity class corresponds to a table of a database and
a property to a column of that table. A persistent entity instance then represents a row of the database
table.

A Simple Entity

The following listing shows a simple example:

@ntity
@abl e(nane=" TEXTMESSAGE")
public class MessageEntity extends AbstractPersistenceEntity {

private String text;

public String getText() {
return this.text;

}

public void setText(String text) {
this.text = text;

}

}

The @Entity annotation defines that instances of this class will be entities which can be stored in the
database. The @Table annotation is optional and can be used to define the name of the corresponding
table in the database. If it is not specified, the simple name of the entity class is used instead.

In order to specify how to map the attributes to columns we annotate the corresponding getter methods
(technically also private field annotation is also possible but approaches can not be mixed). The @Id
annotation specifies that a property should be used as primary key. With the help of the @Column
annotation it is possible to define the name of the column that an attribute is mapped to as well as other
aspects such as nullable or unique. If no column name is specified, the name of the property is used
as default.

Note that every entity class needs a constructor with public or protected visibility that does not have any
arguments. Moreover, neither the class nor its getters and setters may be final.

Entities should be simple POJOs and not contain business logic.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 20

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://hibernate.org/orm/
https://de.wikipedia.org/wiki/Data_Definition_Language

Open Application Standard Platform for Java V2.3.0

Entities and Datatypes

Standard datatypes like Integer, BigDecimal, String, etc. are mapped automatically by JPA. Custom
datatypes are mapped as serialized BLOB by default what is typically undesired. In order to map atomic
custom datatypes (implementations of SimpleDatatype) we implement an AttributeConverter. Here is
a simple example:

@onverter(aut oApply = true)
public class MneyAttributeConverter inplenents AttributeConverter<Mney, BigDecimal> {

publ i c Bi gDeci mal convert ToDat abaseCol um(Mney attribute) {
return attribute. getVal ue();

}

public Money convertToEntityAttribute(Bi gDeci mal dbData) {
return new Money(dbDat a) ;
}
}

The annotation @Converter is detected by the JPA vendor if the annotated class is in the packages
to scan (see beans-jpa.xml). Further, autoApply = true implies that the converter is automatically used
for all properties of the handled datatype. Therefore all entities with properties of that datatype will
automatically be mapped properly (in our example Money is mapped as BigDecimal).

In case you have a composite datatype that you need to map to multiple columns the JPA does not
offer a real solution. As a workaround you can use a bean instead of a real datatype and declare
it as @Embeddable. If you are using hibernate you can implement CompositeUserType. Via the
@TypeDef annotation it can be registered to hibernate. If you want to annotate the CompositeUserType
implementation itself you also need another annoation (e.g. MappedSuperclass tough not technically
correct) so it is found by the scan.

Enumerations

By default JPA maps Enums via their ordinal. Therefore the database will only contain the ordinals (0, 1,
2, etc.) . So, inside the database you can not easily understand their meaning. Using @ Enumerated with
EnumType.STRING allows to map the enum values to their name (Enum.name()). Both approaches are
fragile when it comes to code changes and refactorings (if you change the order of the enum values or
rename them) after the application is deployed to production. If you want to avoid this and get a robust
mapping you can define a dedicated string in each enum value for database representation that you
keep untouched. Then you treat the enum just like any other custom datatype.

BLOB

If binary or character large objects (BLOB/CLOB) should be used to store the value of an attribute, e.g.
to store an icon, the @Lob annotation should be used as shown in the following listing:

@.ob
public byte[] getlcon() {
return this.icon;

}

Warning

Using a byte array will cause problems if BLOBs get large because the entire BLOB is loaded into
the RAM of the server and has to be processed by the garbage collector. For larger BLOBs the
type Blob and streaming should be used.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 21

http://docs.oracle.com/javase/6/docs/api/java/sql/Blob.html

Open Application Standard Platform for Java V2.3.0

public Blob getAttachment() {
return this.attachnent;

}

Date and Time

To store date and time related values, the temporal annotation can be used as shown in the listing below:

@enpor al (Tenpor al Type. TI MESTAVP)
public java.util.Date getStart() {
return start

}

Until Java8 the java data type java.util.Date (or Jodatime) has to be used. TemporalType defines
the granularity. In this case, a precision of nanoseconds is used. If this granularity is not wanted,
TemporalType.DATE can be used instead, which only has a granularity of milliseconds. Mixing these
two granularities can cause problems when comparing one value to another. This is why we only use
TemporalType. TIMESTAMP.

QueryDSL and Custom Types

Using the Aliases API of QueryDSL might result in an InvalidDataAccessApiUsageException when using
custom datatypes in entity properties. This can be circumvented in two steps (tested with QueryDSL
4.0.2 & 4.1.0):

1. Add the following maven dependencies to support custom types via the Aliases API:

<dependency>
<gr oupl d>or g. ow2. asnx/ gr oupl d>
<artifactld>asnx/artifactld>

<versi on>5. 0. 3</ ver si on>

</ dependency>

<dependency>
<gr oupl d>cgl i b</ gr oupl d>
<artifactld>cglib</artifactld>
<ver si on>3. 1</ ver si on>

</ dependency>

2. Make sure, that all your custom types used in entities provide a non-argument constructor with at
least visibility level protected.

Primary Keys

We only use simple Long values as primary keys (IDs). By default it is auto generated
(@GeneratedValue(strategy=GenerationType.AUTO)). This is already provided by the class
io.oasp.module.jpa.persistence.api.AbstractPersistenceEntity that you can extend. In case you have
business oriented keys (often as String), you can define an additional property for it and declare it as
unique (@Column(unique=true)). Be sure to include "AUTO_INCREMENT" in your sql table field ID to
be able to persist data (or similar for other databases).

3.4.1.2 Data Access Object

Data Acccess Objects (DAQOSs) are part of the persistence layer. They are responsible for a specific entity
and should be named <Entity>Dao[Impl]. The DAO offers the so called CRUD-functionalities (create,
retrieve, update, delete) for the corresponding entity. Additionally a DAO may offer advanced operations
such as query or locking methods.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 22

Open Application Standard Platform for Java V2.3.0

DAO Interface

For each DAO there is an interface named <Entity>Dao that defines the API. For CRUD support and
common naming we derive it from the interface io.oasp.module.jpa.persistence.api.Dao:

public interface MyEntityDao extends Dao<MyEntity> {

Li st<MyEntity> findByCriteria(M/EntitySearchCriteria criteria);
}

As you can see, the interface Dao has a type parameter for the entity class. All CRUD operations are
only inherited so you only have to declare the additional methods.

DAO Implementation

Implementing a DAO is quite simple. We crate a class named <Entity>Daolmpl that extends
io.oasp.module.jpa.persistence.base.AbstractDao and implements your <Entity>Dao interface:

public class MyEntityDaol npl extends Abstract Dao<MyEntity> inplenents MyEntityDao {

public List<MyEntity> findByCriteria(MEntitySearchCriteria criteria) {
TypedQuer y<MyEntity> query = createQuery(criteria, getEntityManager());
return query.getResul tList();

}

As you can see AbstractDao already implements the CRUD operations so you only have to implement
the additional methods that you have declared in your <Entity>Dao interface. In the DAO implementation
you can use the method getEntityManager() to access the EntityManager from the JPA. You will need
the EntityManager to create and execute gueries.

3.4.1.3 Queries

The Java Persistence AP| (JPA) defines its own query language, the java persistence query language
(JPQL), which is similar to SQL but operates on entities and their attributes instead of tables and
columns.

Static Queries
The OASP4J advises to specify all queries in one mapping file src\main\resources\META-INF\orm.xml.

Add the following query to this file:

<?xm version="1.0" encodi ng="UTF-8"?>
<entity-mappi ngs version="1.0" xm ns="http://java. sun. com xm / ns/ persi stence/ orml' xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchene- i nst ance"

xsi : schemaLocation="http://java. sun. coml xm / ns/ persi st ence/ orm http://java. sun. com xm / ns/ per si st ence/
orm1_0.xsd">

<nanmed- query nane="get.open. order.positions.for.order">

<query><![CDATA[SELECT op FROM OrderPosition op where op.order.id = ? AND op.state NOT I N (PAYED,
CANCELLED) | | ></ query>
</ named- quer y>

</ hi ber nat e- mappi ng>

To avoid redundant occurrences of the query name (get.open.order.positions.for.order) we define the
constants for each named query:

package i 0. oasp. gastronony.restaurant.general .conmon. api . const ants;

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 23

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

Open Application Standard Platform for Java V2.3.0

public class NamedQueries {
public static final String GET_OPEN_ORDER POSI TI ON_FOR ORDER = "get. open. order.positions.for.order";
}

Note that changing the name of the java constant (GET_OPEN_ORDER_POSITION_FOR_ORDER)
can be done easily with refactoring. Further you can trace where the query is used by searching the
references of the constant.

The following listing shows how to use this query (in class StaffMemberDaolmpl, remember to adapt
StaffMemberDao!):

public List<StaffMnber> get StaffMnberByName(String firstNane, String |astNane) {
Query query = getEntityManager().createNamedQuery(NamedQueri es. STAFFMEMBER _SEARCH_BY_NAME) ;

query. set Paraneter ("firstNane", firstNane);
query. set Paraneter ("l ast Nane", |astNane);

return query.getResul tList();

}

The EntityManager contains a method called createNamedQuery(String), which takes as parameter the
name of the query and creates a new query object. As the query has two parameters, these have to be
set using the setParameter(String, Object) method.

Note that using the createQuery(String) method, which takes as parameter the query as string (this
string already contains the parameters) is not allowed as this makes the application vulnerable to SQL
injection attacks.

When the method getResultList() is invoked, the query is executed and the result is delivered as list. As
an alternative, there is a method called getSingleResult(), which returns the entity if the query returned
exactly one and throws an exception otherwise.

Using Queries to Avoid Bidirectional Relationships

With the usage of queries it is possible to avoid bidirectional relationships, which have some
disadvantages (see relationships). So for example to get all WorkingTime's for a specific StaffMember
without having an attribute in the StaffMember's class that stores these WorkingTime's, the following
query is needed:

<query name="wor ki ng. ti me. search. by. st af f. menber ">
<! [CDATA[sel ect work from Worki ngTi me work where work. staf f Menber = :staffMenber]]>

</ query>

The method looks as follows (extract of class WorkingTimeDaolmpl):

public List<WrkingTi ne> get Wr ki ngTi nesFor St af f Menber (St af f Menber st af f Menber) {
Query query = getEntityManager (). createNamedQuery(NamedQueri es. WORKI NG_TI MES_SEARCH_BY_STAFFMEMBER) ;
query. set Paraneter ("staff Menber", staffMenber);
return query.getResul tList();

}

Do not forget to adapt the WorkingTimeDao interface and the NamedQueries class accordingly.
To get a more detailed description of how to create queries using JPQL, please have a look here or here.
Dynamic Queries

For dynamic queries we recommend to use QueryDSL. It allows to implement queries in a powerful but
readable and type-safe way (unlike Criteria API). If you already know JPQL you will quickly be able to
read and write QueryDSL code. It feels like JPQL but implemented in Java instead of plain text.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 24

http://docs.oracle.com/javaee/5/tutorial/doc/bnbtg.html
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/persistence/api/jpql/JpqlSyntax.html#JPQL_STATEMENT
http://www.querydsl.com/

Open Application Standard Platform for Java V2.3.0

Please be aware that code-generation can be painful especially with large teams. We therefore
recommend to use QueryDSL without code-generation. Here is an example from our sample application:

public List<OrderEntity> findOrders(OrderSearchCriteriaTo criteria) {

O derEntity order = Alias.alias(OderEntity.class);
EntityPat hBase<OrderEntity> alias = Alias. $(order);
JPAQuery query = new JPAQuery(get EntityManager()).fron(alias);
Long tableld = criteria.getTableld();
if (tableld !'= null) {

query.where(Alias. $(order.getTableld()).eq(tableld));
}
O derState state = criteria.getState();
if (state !'= null) {

query. where(Al ias. $(order.getState()).eq(state));
}
applyCriteria(criteria, query);
return query.list(alias);

Using Wildcards

For flexible queries it is often required to allow wildcards (especially in dynamic queries). While users
intuitively expect glob syntax the SQL and JPQL standards work different. Therefore a mapping is
required (see here).

Pagination

The OASP provides the method findPaginated in AbstractGenericDao that executes a given query (for
now only QueryDSL is supported) with pagination parameters based on SearchCriteriaTo. So all you
need to do is derive your individual search criteria objects from SearchCriteriaTo, prepare a QueryDSL-
query with the needed custom search criterias, and call findPaginated. Here is an example from our
sample application:

@verride
publ i c Pagi nat edLi st To<OrderEntity> findOders(OrderSearchCriteriaTo criteria) {

O derEntity order = Alias.alias(OderEntity.class);
EntityPat hBase<OrderEntity> alias = Alias. $(order);
JPAQuery query = new JPAQuery(get EntityManager()).fron(alias);

Long tableld = criteria.getTableld();

if (tableld !'= null) {
query. where(Alias. $(order.getTableld()).eq(tableld));

}

O derState state = criteria.getState();

if (state !'= null) {
query.where(Alias.$(order.getState()).eq(state));

}

return findPagi nated(criteria, query, alias);

Then the query allows pagination by setting pagination.size
(SearchCriteriaTo.getPagination().setSize(Integer)) to the number of hits per page and
pagination.page (SearchCriteriaTo.getPagination().setPage(int)) to the desired page. If you allow
the client to specify pagination.size, it is recommended to limit this value on the server
side (SearchCriteriaTo.limitMaximumPageSize(int)) to prevent performance problems or DOS-
attacks. If you need to also return the total number of hits available, you can set
SearchCriteria.getPagination().setTotal(boolean) to true.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 25

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/persistence/api/jpql/JpqlSyntax.html#PATTERN_VALUE

Open Application Standard Platform for Java V2.3.0

Pagination example

For the table entity we can make a search request by accessing the REST endpoint with pagination
support like in the following examples:

{
"pagi nation": {
"size":2,
"total ":true
}
}
/ | Response
{
"pagi nation": {
"size": 2,
"page": 1,
"total ": 11
bo
"result": [
{
"id": 101,
"nodi ficati onCounter":
"revision": null,
"waiterld": null,
"nunmber": 1,
"state": "OCCUPI ED"
ba
{
"id": 102,
"nodi ficati onCounter":
"revision": null,
“"waiterld": null,
"nunber": 2,
"state": "FREE"
}
|
}
Note

As we are requesting with the total property set to true the server responds with the total count

of rows for the query.

POST oasp4j - sanpl e-server/servi ces/ rest/tabl emanagenent/v1/tabl e/ search

1,

1,

For retrieving a concrete page, we provide the page attribute with the desired value. Here we also left

out the total property so the server doesn’t incur on the effort to calculate it:

{

"pagi nation": {
"size": 2,
"page": 2

}

}
/ | Response
{
"pagi nation": {
"size": 2,
"page": 2,
“total ": null
bo
"result": [
{

POST oasp4j - sanpl e-server/servi ces/ rest/tabl emanagenent/v1/tabl e/ search

This documentation is licensed under the

Creative Commons License (Attribution-
NoDerivatives 4.0 International).

26

Open Application Standard Platform for Java V2.3.0

"id": 103,

"nmodi ficationCounter": 1,
"revision": null,
"waiterld": null,
"nunber": 3,

"state": "FREE"

"id": 104,

"nodi ficati onCounter": 1,
"revision": null,
“"waiterld": null,
"nunber": 4,

"state": "FREE"

Query Meta-Parameters

Queries can have meta-parameters and the OASP currently provides support for timeout. The OASP
provides the method applyCriteria in AbstractGenericDao that applies meta-parameters to a query
based on SearchCriteriaTo. If you already use the pagination support (see above), you do not need to
call applyCriteria manually, as it is called internally by findPaginated.

3.4.1.4 Relationships
n:1 and 1:1 Relationships

Entities often do not exist independently but are in some relation to each other. For example, for every
period of time one of the StaffMember’s of the restaurant example has worked, which is represented by
the class WorkingTime, there is a relationship to this StaffMember.

The following listing shows how this can be modeled using JPA:

@ntity
public class WorkingTi ne {

private StaffMenber staffMenber;

@manyToOne

@oi nCol um(name=" STAFFVEMBER")

public StaffMenber getStaffMnber() {
return staffMenber;

}

public void setStaffMenber(StaffMnber staffMenber) {
this.staffMenber = staffMenber;
}

To represent the relationship, an attribute of the type of the corresponding entity class that is referenced
has been introduced. The relationship is a n:1 relationship, because every WorkingTime belongs to
exactly one StaffMember, but a StaffMember usually worked more often than once.

This is why the @ManyToOne annotation is used here. For 1:1 relationships the @OneToOne
annotation can be used which works basically the same way. To be able to save information about
the relation in the database, an additional column in the corresponding table of WorkingTime is
needed which contains the primary key of the referenced StaffMember. With the name element of the
@JoinColumn annotation it is possible to specify the name of this column.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 27

Open Application Standard Platform for Java V2.3.0

1:n and n:m Relationships

The relationship of the example listed above is currently an unidirectional one, as there is a getter
method for retrieving the StaffMember from the WorkingTime object, but not vice versa.

To make it a bidirectional one, the following code has to be added to StaffMember:
private Set<WrkingTi mes> wor ki ngTi nes;

@neToMany(mappedBy="st af f Menber ")
public Set <Worki ngTi ne> get Wor ki ngTi nes() {
return worki ngTi mes;

}

public void set WrkingTi nes(Set <Wbr ki ngTi ne> wor ki ngTi nes) {
t hi s. wor ki ngTi mes = wor ki ngTi nes;

}

To make the relationship bidirectional, the tables in the database do not have to be changed. Instead the
column that corresponds to the attribute staffMember in class WorkingTime is used, which is specified
by the mappedBy element of the @OneToMany annotation. Hibernate will search for corresponding
WorkingTime objects automatically when a StaffMember is loaded.

The problem with bidirectional relationships is that if a WorkingTime object is added to the set or list
workingTimes in StaffMember, this does not have any effect in the database unless the staffMember
attribute of that WorkingTime object is set. That is why the OASP4J advices not to use bidirectional
relationships but to use queries instead. How to do this is shown here. If a bidirectional relationship
should be used nevertheless, approriate add and remove methods must be used.

For 1:n and n:m relations, the OASP4J demands that (unordered) Sets and no other collection types
are used, as shown in the listing above. The only exception is whenever an ordering is really needed,
(sorted) lists can be used.

For example, if WorkingTime objects should be sorted by their start time, this could be done like this:

private List<WrkingTi mes> worKki ngTi nes;

@neToMany(mappedBy = "staf f Menber ")

@ derBy("startTi ne asc")

public List<WrkingTi me> get Wr ki ngTi nes() {
return workingTi nes;

}

public void set WrkingTi nes(Li st<Wbr ki ngTi ne> wor ki ngTi nes) {
t hi s. wor ki ngTi mes = wor ki ngTi nes;

}

The value of the @OrderBy annotation consists of an attribute name of the class followed by asc
(ascending) or desc (descending).

To store information about a n:m relationship, a separate table has to be used, as one column cannot
store several values (at least if the database schema is in first normal form).

For example if one wanted to extend the example application so that all ingredients of one FoodDrink
can be saved and to model the ingredients themselves as entities (e.g. to store additional information
about them), this could be modeled as follows (extract of class FoodDrink):

private Set<Order> ingredients;

@manyToMany
@oi nTabl e
public Set<lngredi ent> getlngredients() {

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 28

Open Application Standard Platform for Java V2.3.0

return ingredients;

}

public void set O ders(Set<Ingredient> ingredients) {
this.ingredients = ingredients;

}

Information about the relation is stored in a table called BILL_ORDER that has to have two columns, one
for referencing the Bill, the other one for referencing the Order. Note that the @JoinTable annotation is
not needed in this case because a separate table is the default solution here (same for n:m relations)
unless there is a mappedBy element specified.

For 1:n relationships this solution has the disadvantage that more joins (in the database system) are
needed to get a Bill with all the Orders it refers to. This might have a negative impact on performance
so that the solution to store a reference to the Bill row/entity in the Order’s table is probably the better
solution in most cases.

Note that bidirectional n:m relationships are not allowed for applications based on the OASP4J. Instead
a third entity has to be introduced, which "represents” the relationship (it has two n:1 relationships).

Eager vs. Lazy Loading

Using JPA/Hibernate it is possible to use either lazy or eager loading. Eager loading means that
for entities retrieved from the database, other entities that are referenced by these entities are also
retrieved, whereas lazy loading means that this is only done when they are actually needed, i.e. when
the corresponding getter method is invoked.

Application based on the OASP4J must use lazy loading by default. Projects generated with the
project generator are already configured so that this is actually the case (this is done in the file
NamedQueries.hbm.xml).

For some entities it might be beneficial if eager loading is used. For example if every time a Bill is
processed, the Order entities it refers to are needed, eager loading can be used as shown in the following
listing:

@neToMany(fetch = Fet chType. EAGER)

@oi nTabl e

public Set<Order> getOrders() {
return orders;

}

This can be done with all four types of relationships (annotations: @OneToOne, @ManyToOne,
@OneToMany, @ManyToOne).

Cascading Relationships

It is not only possible to specify what happens if an entity is loaded that has some relationship to other
entities (see above), but also if an entity is for example persisted or deleted. By default, nothing is done
in these situations.

This can be changed by using the cascade element of the annotation that specifies the relation
type (@OneToOne, @ManyToOne, @OneToMany, @ManyToOne). For example, if a StaffMember is
persisted, all its WorkingTime's should be persisted and if the same applies for deletions (and some
other situations, for example if an entity is reloaded from the database, which can be done using the
refresh(Object) method of an EntityManager), this can be realized as shown in the following listing
(extract of the StaffMember class):

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 29

Open Application Standard Platform for Java V2.3.0

@neToMany(mappedBy = "staffMenber", cascade=CascadeType. ALL)
public Set <Worki ngTi me> get Wor ki ngTi ne() {
return worKki ngTi ne;

}

There are several CascadeTypes, e.g. to specify that a "cascading behavior" should only be used if an
entity is persisted (CascadeType.PERSIST) or deleted (CascadeType.REMOVE), see here for more
information.

3.4.1.5 Embeddable

An embeddable Object is a way to implement relationships between entities, but with a mapping in which
both entities are in the same database table. If these entities are often needed together, this is a good
way to speed up database operations, as only one access to a table is needed to retrieve both entities.

Suppose the restaurant example application has to be extended in a way that it is possible to store
information about the addresses of StaffMember's, this can be done with a new Address class:

@nbeddabl e
public class Address {

private String street;
private String nunber;
private Integer zipCode;
private String city;

@ol um(nane=" STREETNUVBER")

public String getNunber() {
return nunber;

}

public void setNunber (String nunber) {
t hi s. nunber = nunber;

}

/] other getter and setter nethods, equals, hashCode

This class looks a bit like an entity class, apart from the fact that the @Embeddable annotation is used
instead of the @Entity annotation and no primary key is needed here. In addition to that the methods
equals(Object) and hashCode() need to be implemented as this is required by Hibernate (it is not
required for entities because they can be unambiguously identified by their primary key). For some hints
on how to implement the hashCode() method please have a look here.

Using the address in the StaffMember entity class can be done as shown in the following listing:

@ntity
public class StaffMenber inplenents StaffMnberRo {

private Address address;

@nbedded
publ i c Address get Address() {
return address;

}

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 30

http://meri-stuff.blogspot.de/2012/03/jpa-tutorial.html
http://stackoverflow.com/questions/113511/hash-code-implementation

Open Application Standard Platform for Java V2.3.0

public voi d set Address(Address address) {
this.address = address;

}
}

The @Embedded annotation needs to be used for embedded attributes. Note that if in all columns in the
StaffMember's table that belong to the Address embeddable there are null values, the Address is null
when retrieving the StaffMember entity from the database. This has to be considered when implementing
the application core to avoid NullPointerException’s.

Moreover, if the database tables are created automatically by Hibernate and a primitive data type is
used in the embeddable (in the example this would be the case if int is used instead of Integer as
data type for the zipCode), there will be a not null constraint on the corresponding column (reason: a
primitive data type can never be null in java, so hibernate always introduces a not null constraint). This
constraint would be violated if one tries to insert a StaffMember without an Address object (this might
be considered as a bug in Hibernate).

Another way to realize the one table mapping are Hibernate UserType'’s, as described here.
3.4.1.6 Inheritance

Just like normal java classes, entity classes can inherit from others. The only difference is that you need
to specify how to map a subtype hierarchy to database tables.

The Java Persistence API (JPA) offers three ways to do this:

* One table per hierarchy. This table contains all columns needed to store all types of entities in the
hierarchy. If a column is not needed for an entity because of its type, there is a null value in this
column. An additional column is introduced, which denotes the type of the entity (called "dtype" which
is of type varchar and stores the class name).

» One table per subclass. For each concrete entity class there is a table in the database that can store
such an entity with all its attributes. An entity is only saved in the table corresponding to its most
concrete type. To get all entities of a type that has subtypes, joins are needed.

» One table per subclass: joined subclasses. In this case there is a table for every entity class (this
includes abstract classes), which contains all columns needed to store an entity of that class apart
from those that are already included in the table of the supertype. Additionally there is a primary key
column in every table. To get an entity of a class that is a subclass of another one, joins are needed.

Each of the three approaches has its advantages and drawbacks, which are discussed in detail here.
In most cases, the first one should be used, because it is usually the fastest way to do the mapping,
as no joins are needed when retrieving entities and persisting a new entity or updating one only affects
one table. Moreover it is rather simple and easy to understand.

One major disadvantage is that the first approach could lead to a table with a lot of null values, which
might have a negative impact on the database size.

The following listings show how to realize a class hierarchy among entity classes for the class FoodDrink
and its subclass Drink:

@ntity
@ nheritance(strategy=IlnheritanceType. S| NGLE_TABLE)
public abstract class FoodDrink {

private long id;

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 31

http://tedyoung.me/2012/02/07/custom-user-types-with-jpa-and-spring/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://openjpa.apache.org/builds/1.0.4/apache-openjpa-1.0.4/docs/manual/jpa_overview_mapping_inher.html#jpa_overview_mapping_inher_tpc

Open Application Standard Platform for Java V2.3.0

private String description;
private byte[] picture;

private |ong version;

@d
@ol um(nane = "I D")
@zener at edVal ue(generator = "SEQ GEN')

@equenceCener at or (nane = "SEQ GEN', sequenceNane = "SEQ FOODDRI NK")
public long getld() {
return this.id;

}

public void setld(long id) {
this.id = id;
}

@ntity
public class Drink extends FoodDrink {

private bool ean al coholic;

publ i c bool ean i sAl coholic() {
return al coholic;

}

public void setAl coholic(bool ean al coholic) {
this.al coholic = al coholic;
}
}

To specify how to map the class hierarchy, the @Ilnheritance annotation is used. Its
element strategy defines which type of mapping is used and can have the following values:
InheritanceType.SINGLE_TABLE (= one table per hierarchy), InheritanceType.TABLE_PER_CLASS
(= one table per subclass) and InheritanceType.JOINED (= one table per subclass, joined tables).

As a best practice we advise you to avoid deep class hierarchies among entity classes (unless they
reduce complexity).

3.4.1.7 Concurrency Control

The concurrency control defines the way concurrent access to the same data of a database is handled.
When several users (or threads of application servers) concurrently access a database, anomalies may
happen, e.g. a transaction is able to see changes from another transaction although that one did, not yet
commit these changes. Most of these anomalies are automatically prevented by the database system,
depending on the isolation level (property hibernate.connection.isolation in the jpa.xml, see here).

Another anomaly is when two stakeholders concurrently access a record, do some changes and write
them back to the database. The JPA addresses this with different locking strategies (see here or here).

As a best practice we are using optimistic locking for regular end-user services (OLTP) and pessimistic
locking for batches.

Optimistic Locking

The class io.oasp.module.jpa.persistence.api.AbstractPersistenceEntity already provides optimistic
locking via a modificationCounter with the @Version annotation. Therefore JPA takes care of optimistic

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 32

http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configuration.html
http://www.objectdb.com/java/jpa/persistence/lock
https://weblogs.java.net/blog/2009/07/30/jpa-20-concurrency-and-locking

Open Application Standard Platform for Java V2.3.0

locking for you. When entities are transferred to clients, modified and sent back for update you need to
ensure the modificationCounter is part of the game. If you follow our guides about transfer-objects and
services this will also work out of the box. You only have to care about two things:

» How to deal with optimistic locking in relationships?
Assume an entity A contains a collection of B entities. Should there be a locking conflict if one user
modifies an instance of A while another user in parallel modifies an instance of B that is contained in
the other instance? To address this , take a look at GenericDao.forcelncrementModificationCounter.

» What should happen in the Ul if an OptimisticLockException occurred?
According to KISS our recommendation is that the user gets an error displayed that tells him to do
his change again on the recent data. Try to design your system and the work processing in a way to
keep such conflicts rare and you are fine.

Pessimistic Locking

For back-end services and especially for batches optimistic locking is not suitable. A human user shall
not cause a large batch process to fail because he was editing the same entity. Therefore such use-
cases use pessimistic locking what gives them a kind of priority over the human users. In your DAO
implementation you can provide methods that do pessimistic locking via EntityManager operations that
take a LockModeType. Here is a simple example:

get EntityManager ().l ock(entity, LockMdydeType. READ);

When using the lock(Object, LockModeType) method with LockModeType.READ, Hibernate will issue
a select ... for update. This means that no one else can update the entity (see here for more information
on the statement). If LockModeType.WRITE is specified, Hibernate issues a select ... for update nowait
instead, which has has the same meaning as the statement above, but if there is already a lock, the
program will not wait for this lock to be released. Instead, an exception is raised.

Use one of the types if you want to modify the entity later on, for read only access no lock is required.

As you might have noticed, the behavior of Hibernate deviates from what one would expect by looking
at the LockModeType (especially LockModeType.READ should not cause a select ... for update to be
issued). The framework actually deviates from what is specified in the JPA for unknown reasons.

3.4.1.8 Database Auditing

See auditing guide.

3.4.1.9 Testing Entities and DAOs

See testing guide.

3.4.1.10 Principles

We strongly recommend these principles:

» Use the JPA where ever possible and use vendor (hibernate) specific features only for situations
when JPA does not provide a solution. In the latter case consider first if you really need the feature.

» Create your entities as simple POJOs and use JPA to annotate the getters in order to define the
mapping.

» Keep your entities simple and avoid putting advanced logic into entity methods.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 33

https://oasp.github.io/oasp4j/2.3.0/maven/apidocs/io/oasp/module/jpa/dataaccess/api/GenericDao.html#forceIncrementModificationCounter(E)
http://docs.oracle.com/javaee/6/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/6/api/javax/persistence/LockModeType.html
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm
http://docs.oracle.com/javaee/6/api/javax/persistence/LockModeType.html

Open Application Standard Platform for Java V2.3.0

3.4.2 Database Configuration

The configuration for spring and hibernate is already provided by OASP in our sample application and
the application template. So you only need to worry about a few things to customize.

3.4.2.1 Database System and Access

Obviously you need to configure which type of database you want to use as well as the location and
credentials to access it. The defaults are configured in application-default.properties that is bundled and
deployed with the release of the software. It should therefore contain the properties as in the given
example:

dat abase. ur| =j dbc: post gresql : / / dat abase. enterpri se. conl app

dat abase. user. | ogi n=appuser 01

dat abase. hi bernate. di al ect = org. hi bernate. di al ect. Post greSQLDi al ect
dat abase. hi ber nat e. hbn2ddl . aut o=val i date

The environment specific settings (especially passwords) are configured by the operators in
application.properties. For further details consult the configuration guide. It can also override the default
values. The relevant configuration properties can be seen by the following example for the development
environment (located in src/test/resources):

dat abase. url =j dbc: post gresql : / /1 ocal host/ app
dat abase. user. passwor g=>*** k&% kx
dat abase. hi ber nat e. hbn2ddl . aut o=creat e

For further details about database.hibernate.nbm2ddl.auto please see here. For production and
acceptance environments we use the value validate that should be set as default.

3.4.2.2 Database Migration

See database migration.

3.4.2.3 Database Logging

Add the following properties to appl i cati on. properti es to enable logging of database queries for
debugging purposes.

spring.j pa.properties. hi bernate.show sql =true
spring.jpa. properties. hi bernate.use_sql _coments=true
spring.jpa.properties. hibernate.format_sql =true

3.4.3 Security
3.4.3.1 SQL-Injection

A common security threat is SQL-injection. Never build queries with string concatenation or your code
might be vulnerable as in the following example:

String query = "Select op from O derPosition op where op.coment = " + userlnput
return getEntityManager (). createQuery(query).getResultList()

Via the parameteter userlnput an attacker can inject SQL (JPQL) and execute arbitrary statements in
the database causing extreme damage. In order to prevent such injections you have to strictly follow
our rules for queries: Use named queries for static queries and QueryDSL for dynamic queries. Please
also consult the SQL Injection Prevention Cheat Sheet.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 34

https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/session-configuration.html#configuration-misc-properties
http://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Open Application Standard Platform for Java V2.3.0

3.4.3.2 Limited Permissions for Application

We suggest that you operate your application with a database user that has limited permissions so he
can not modify the SQL schema (e.g. drop tables). For initializing the schema (DDL) or to do schema
migrations use a separate user that is not used by the application itself.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 35

Open Application Standard Platform for Java V2.3.0

3.5 Batch Layer

We understand batch processing as bulk-oriented, non-interactive, typically long running execution of
tasks. For simplicity we use the term batch or batch job for such tasks in the following documentation.

OASP uses Spring Batch as batch framework.

This guide explains how Spring Batch is used in OASP applications. Please note that it is not yet fully
consistent concerning batches with the sample application. You should adhere to this guide by now.

3.5.1 Batch architecture

In this chapter we will describe the overall architecture (especially concerning layering) and how to
administer batches.

3.5.1.1 Layering

Batches are implemented in the batch layer. The batch layer is responsible for batch processes, whereas
the business logic is implemented in the logic layer. Compared to the service layer you may understand
the batch layer just as a different way of accessing the business logic. From a component point of
view each batch is implemented as a subcomponent in the corresponding business component. The
business component is defined by the business architecture.

Let's make an example for that. The sample application implements a batch for exporting bills. This
bill-export-batch belongs to the salesmanagement business component. So the bill-export-batch is
implemented in the following package:

<basepackage>. sal esmanagenent . batch. i npl.billexport.*

Batches should invoke use cases in the logic layer for doing their work. Only "batch specific" technical
aspects should be implemented in the batch layer.

Example: For a batch, which imports product data from a CSV file this means that all code for actually
reading and parsing the CSV input file is implemented in the batch layer. The batch calls the use case
"create product" in the logic layer for actually creating the products for each line read from the CSV
input file.

Accessing data access layer

In practice it is not always appropriate to create use cases for every bit of work a batch should do.
Instead, the data access layer can be used directly. An example for that is a typical batch for data
retention which deletes out-of-time data. Often deleting out-dated data is done by invoking a single SQL
statement. It is appropriate to implement that SQL in a DAO method and call this method directly from
the batch. But be careful that this pattern is a simplification which could lead to business logic cluttered
in different layers which reduces maintainability of your application. It is a typical design decision you
have to take when designing your specific batches.

3.5.1.2 Batch administration and execution
Starting and Stopping Batches

Spring Batch provides a simple command line API for execution and parameterization of batches, the
ConmandLi neJobRunner . It is not yet fully compatible with Spring Boot, however. For those using
Spring Boot OASP provides the Spr i ngBoot Bat chConmandLi ne with similar functionalities.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 36

http://projects.spring.io/spring-batch/

Open Application Standard Platform for Java V2.3.0

Both execute batches as a "simple" standalone process (instantiating a new JVM and creating a new
ApplicationContext).

Starting a Batch Job
For starting a batch job, the following parameters are required:
[[guide-batch-layer_jobpath(s)]] ===== jobPath(s)

The location of the JavaConfig classes (usually annotated with @Configuration or
@pr i ngBoot Appl i cat i on) and/or XML files that will be used to create an Appl i cati onCont ext .

The CommandLineJobRunner only accepts one class/file, which must contain everything needed to
run a job (potentially by referencing other classesf/files), the SpringBootBatchCommandLine, however,
expects that there are two paths given: one for the general batch setup and one for the XML file
containing the batch job to be executed.

There is an example of a general batch setup for Spring Boot in the sanpl es/ cor e (oasp4j - sanpl e-
cor e) project, class Spri ngBoot Bat chApp, which also imports the general configuration class
introduced in the chapter on the general configuration. Note that Spr i ngBoot Bat chApp deactivates
the evaluation of annotations used for authorization, especially the @ol esAl | owed annotation. You
should of course make sure that only authorized users can start batches, but once the batch is started
there is usually no need to check any authorization.

jobName
The name of the job to be run.

All arguments after the job name are considered to be job parameters and must be in the format of
name=val ue:

Example for the CommandLineJobRunner:

java org.springfranmework. bat ch. core. | aunch. support. CommandLi neJobRunner cl asspat h: confi g/ app/ bat ch/
beans-bi |l I export.xm bill ExportJob -outputFile=file:out.csv date(date)=2015/12/20

Example for the SpringBootBatchCommandLine:

java i o.oasp. nodul e. bat ch. conmon. base. Spri ngBoot Bat chCommandLi ne
i 0. oasp. gast ronony. rest aur ant. Spri ngBoot Bat chApp cl asspat h: confi g/ app/ bat ch/ beans-bi | | export. xm
bi || ExportJob -outputFile=file:out.csv date(date)=2015/12/20

The date parameter will be explained in the section on parameters.

Note that when a batch is started with the same parameters as a previous execution of the same batch
job, the new execution is considered a restart, see restarts for further details. Parameters starting with
a "-" are ignored when deciding whether an execution is a restart or not (so called non identifying
parameters).

When trying to restart a batch that was already complete, there will either be an exception (message:
"A job instance already exists and is conplete for paraneters={.}. If you
want to run this job again, change the paraneters.")orthe batch will simply do nothing
(might happen when no or only non identifying parameters are set; in this case the console log contains
the following message for every step: "Step al ready conplete or not restartable, so
no action to execute: ..).

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 37

Open Application Standard Platform for Java V2.3.0

Stopping a Job

The command line option to stop a running execution is as follows:

java org. springfranmework. bat ch. core. | aunch. support. CommandLi neJobRunner cl asspat h: confi g/ app/ bat ch/
beans-bi |l | export.xm -stop bill ExportJob

or

java i o.oasp. nodul e. bat ch. conmon. base. Spri ngBoot Bat chConmandLi ne
i 0. oasp. gastronony. restaurant. Spri ngBoot Bat chApp cl asspat h: confi g/ app/ bat ch/ beans- bi | | export. xm
bi | | ExportJob —stop

Note that the job is not shutdown immediately, but might actually take some time to stop.
Scheduling
In real world scheduling of batches is not as simple as it first might look like.

» Multiple batches have to be executed in order to achieve complex tasks. If one of those batches fails
the further execution has to be stopped and operations should be notified for example.

« Input files or those created by batches have to be copied from one node to another.

» Scheduling batch executing could get complex easily (quarterly jobs, run job on first workday of a
month, ...)

For OASP we propose the batches themselves should not mess around with details of batch
administration. Likewise your application should not do so.

Batch administration should be externalized to a dedicated batch administration service or scheduler.
This service could be a complex product or a simple tool like cron. We propose Rundeck as an open
source job scheduler.

This gives full control to operations to choose the solution which fits best into existing administration
procedures.

3.5.2 Implementation
In this chapter we will describe how to properly setup and implement batches.
3.5.2.1 Main Challenges

At a first glimpse, implementing batches is much like implementing a backend for client processing.
There are, however, some points at which batches have to be implemented totally different. This is
especially true if large data volumes are to be processed.

The most important points are:
Transaction handling

For processing request made by clients there is usually one transaction for each request. If anything
goes wrong, the transaction is rolled back and all changes are reverted.

A naive approach for batches would be to execute a whole batch in one single transaction so that if
anything goes wrong, all changes are reverted and the batch could start from scratch. For processing

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 38

http://rundeck.org

Open Application Standard Platform for Java V2.3.0

large amounts of data, this is technically not feasible, because the database system would have to be
able to undo every action made within this transaction. And the space for storing the undo information
needed for this (the so called "undo tablespace") is usually quite limited.

So there is a need of short running transactions. To help programmers to do so, Spring Batch offers the
so called chunk processing which will be explained here.

Restarting Batches

In client processing mode, when an exception occurs, the transaction is rolled back and there is no need
to worry about data inconsistencies.

This is not true for batches however, due to the fact that you usually can’t have just one transaction.
When an unexpected error occurs and the batch aborts, the system is in a state where the data is partly
processed and partly not and there needs to be some sort of plan on how to continue from there.

Even if a batch was perfectly reliable, there might be errors that are not under the control of the
application, e.g. lost connection to the database, so that there is always a need for being able to restart.

The section on restarts describes how to design a batch that is restartable. What's important is that a
programmer has to invest some time upfront for a batch to be able restart after aborts.

Exception handling in Batches

The problem with exception handling is that a single record can cause a whole batch to fail and many
records will remain unprocessed. In contrast to this, in client processing mode when processing fails
this usually affects only one user.

To prevent this situation, Spring Batch allows to skip data when certain exceptions occur. However, the
feature should not be misused in a way that you just skip all exceptions independently of their cause.

So when implementing a batch, you should think about what exceptional situations might occur and how
to deal with that and weather it is okay to skip those exceptions or not. When an unexpected exception
occurs, the batch should still fail so that this exception is not ignored but its causes are analyzed.

Another way of handling exceptions in batches is retrying: Simply try to process the data once more
and hope that everything works well this time. This approach often works for database problems, e.g.
timeouts.

The section on exception handling explains skipping and retrying in more detail.

Note that exceptions are another reason why you should not execute a whole batch in one transaction.
If anything goes wrong, you could either rollback the transaction and start the batch from scratch or you
could manually revert all relevant changes. Both are not very good solutions.

Performance issues

In client processing mode, optimizing throughput (and response times) is an important topic as well,
of course.

However, a performance that is still considered okay for client processing might be problematic for
batches as these usually have to process large volumes of data and the time for their execution is usually
quite limited (batches are often executed at night when no one is using the application).

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 39

Open Application Standard Platform for Java V2.3.0

An example: If processing the data of one person takes a second, this is usually still considered OK
for client processing (even though performance could be better). However if a batch has to process the
data of 100.000 persons in one night and is not executed with multiple threads, this takes roughly 28
hours, which is by far too much.

The section on performance contains some tips on how to deal with performance problems.
3.5.2.2 Setup
Database

Spring Batch needs some meta data tables for monitoring batch executions and for restoring state for
restarts. Detailed description about needed tables, sequences and indexes can be found in Spring Batch
- Reference Documentation: Appendix B. Meta-Data Schema.

It is not recommended to add additional meta data tables, because this easily leads to inconsistencies
with what is stored in those tables maintained by Spring Batch. You should rather try to extract all
needed information out of the standard tables in case the standard API (especially JobReposi tory
and JobExpl or er, see below) does not fit your needs.

Failure information

BATCH_JOB_EXECUTI ON. EXI T_MESSAGE and BATCH_STEP_EXECUTI ON. EXI T_MESSAGE store a
detailed description of how the job exited. In the case of failure, this might include as much of the
stack trace as is possible. BATCH _STEP_EXECUTI ON_CONTEXT. SHORT _CONTEXT stores a stringified
version of the step’s Execut i onCont ext (see saving and restoring state, the rest is stored in a BLOB
if needed). The default length of those columns in the sample schema scripts is 2500.

It is good to increase the length of those columns as far as the database allows it to make it easier to
find out which exception failed a batch (not every exception causes a failure, see exception handling).
Some JDBC drivers cast CLOBs to string automatically. If this is the case, you can use CLOBs instead.

General Configuration

For configuring batches, we recommend not to use annotations (would not work very well for batches)
or JavaConfig, but XML, because this makes the whole batch configuration more transparent, as its
structure and implementing beans are immediately visible. Moreover the Spring Batch documentation
focuses rather on XML based configurations than on JavaConfig.

For explanations on how these XML files are build in general, have a look at the spring documentation.

There is, however, some general configuration needed for all batches, for which we use JavaConfig,
as it is also used for the setup of all other layers. You can find an example of such a configuration in
the sanpl es/ cor e project: BeansBat chConfi g. In this section, we will explain the most important
parts of this class.

The j obReposi t ory is used to update the meta data tables.

The database type can optionally be set onthe j obReposi t or y for correctly handling database specific
things using the set Dat abaseType method. Possible values are oracle, mysql, postgres etc.

If the size of all three columns, which by default have a length limitation of 2500, has been
increased as proposed here, the property maxVarCharLength should be adjusted accordingly using the
corresponding setter method in order to actually utilize the additional space.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 40

http://docs.spring.io/spring-batch/reference/html/metaDataSchema.html
http://docs.spring.io/spring-batch/reference/html/metaDataSchema.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-factory-metadata

Open Application Standard Platform for Java V2.3.0

The j obExpl or er offers methods for reading from the meta data tables in addition to those methods
provided by the j obReposi t ory, e.g. getting the last executions of a batch.

The j obLauncher is used to actually start batches.

We use our own implementation (JobLauncher Wt hAddi ti onal Rest art Capabilities) here,
which can be found in the module nodul es/ bat ch (oasp4j - bat ch). It enables a special form of
restarting a batch ("restart from scratch”, see the section on restarts for further details).

The j obRegi st ry is basically a map, which contains all batch jobs. It is filled by the bean of type
JobRegi st ryBeanPost Processor automatically.

A JobPar anet er sl ncrenet er (bean i ncr enent er) can be used to generate unique parameters,
see restarts and parameters for further details. It should be configured manually for each batch job, see
example batch below, otherwise exceptions might occur when starting batches.

3.5.2.3 Example-Batch

As already mentioned, every batch job consists of one or more batch steps, which internally either use
chunk processing or tasklet based processing.

Our bill export batch job consists of the following to steps:

1. Read all (not processed) bills from the database, mark them as processed (additional attribute) and
write them into a CSV file (to be further processed by other systems). This step is implemented using
chunk processing (see chunk processing).

2. Delete all bill from the database which are marked as processed. This step is implemented in a tasklet
(see tasklet based processing).

Note that you could also delete the bills directly. However, for being able to demonstrate tasklet based
processing, we have created a separate step here.

Also note that in real systems you would usually create a backup of data as important as bills, which
is not done here.

The beans-billexport.xml (located in src/main/resources/config/app/batch) has to look like this to
implement the batch. Note that you might not fully understand this example by now, but you should after
reading the whole chapter on batches.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. wW3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: bat ch="ht t p: // www. spri ngframewor k. or g/ schema/ bat ch"
xsi : schemaLocat i on=
"http://ww.springframework. or g/ schema/ beans
htt p: //ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ bat ch
http://ww. springfranmewor k. or g/ schema/ bat ch/ spri ng- bat ch. xsd" >

<batch:job id="bill ExportJob" increnmenter="increnenter">

<batch: step id="createCsvFile" next="deleteBills">
<bat ch: t askl et >
<batch:transaction-attributes tineout="180"/>
<bat ch: chunk reader="unprocessedBi | | sReader" processor="processedMarker"
witer="csvFileWiter" conmt-interval ="1000" />
</ bat ch: t askl et >
<l i steners>

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 41

Open Application Standard Platform for Java V2.3.0

<listener ref="chunkLoggi ngLi stener"/>
<l i steners>
</ bat ch: st ep>

<bat ch: step id="del eteBills">
<bat ch: taskl et ref="billsDel eter">
<batch:transaction-attributes tineout="180" />
</ bat ch: t askl et >

</ bat ch: st ep>

</ bat ch: j ob>

<bean i d="unprocessedBi | | sReader"

cl ass="i 0. oasp. sal esmanagenent . batch. i npl . bi |l export. UnprocessedBi | | sReader" >
<property name="pageSi ze" val ue="1000" />

<property nanme="bil| Dao" ref="bill Dao" />

</ bean>

<bean i d="processedMarker"

cl ass="i 0. oasp. sal esmanagenent . batch. i npl . bi || export. ProcessedMar ker ">
<property name="bill Dao" ref="billDao" />

</ bean>

<bean id="csvFileWiter" class="org.springframework.batch.itemfile.FlatFileltemNiter" scope="step">
<property name="resource" val ue="#{j obParanmeters['outputFile']}"/>
<property name="encodi ng" val ue="UTF-8" />
<property name="header Cal | back" >
<bean cl ass="i 0. oasp. sal esmanagenent . bat ch. i npl . bi || export.Bi || Header Cal | back"/ >
</ property>
<property name="|ineAggregator">
<bean cl ass="i 0. oasp. sal esmanagenent . batch. i npl. bi |l export.BillLi neAggregator"/>
</ property>
</ bean>

<bean id="billsDel eter" class="io.o0asp. sal esmanagenent. batch.inpl.billexport.BillsDel eter">
<property name="bil | sToDel et el nTransacti on" val ue="10000" />
</ bean>

<bean i d="chunkLoggi ngLi st ener"
cl ass="i 0. oasp. nodul e. bat ch. common. i npl . ChunkLoggi ngLi st ener" />
</ beans>

As you can see, there is a job element (bi | | Expor t Job), which contains the two step elements
(creat eCsvFi |l e and del et eBi | | s). Note that for every step you have to explicitly specify which
step comes next (using the next attribute), unless it is the last step.

The step elements always contains a tasklet element, even if chunk processing is used. The transaction-
attributes element is especially used to set timeout of transactions (in seconds). Note that there is usually
more than one transaction per step (see below).

What follows is either a chunk element with 1t enReader, It enProcessor, [temWiter and a
commit interval (see chunk processing) or the tasklet element containing a reference to a tasklet.

In the example above the |tenReader unprocessedBil | sReader always reads 1000 ids
of unprocessed bills (via a DAO) and returns them one after another. The |t enProcessor
pr ocessedMar ker reads the corresponding bills from the database (see chunk processing why we
do not read them directly in the |t enReader) and marks them as processed. The | temWi ter
csvFil eWiter (see below on how this writer is configured) writes them to a CSV file. The path of
this file is provided as batch parameter (out put Fi | e).

The t askl et bi | | sDel et er deletes all processed bills (10.000 in one transaction).

The chunkLoggi ngLi st ener, which is also used in the example above, can be utilized for all chunk
steps to log exceptions together with the items where these exceptions occurred (see listeners for further

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 42

Open Application Standard Platform for Java V2.3.0

details on listeners). It's implementation can be found in the module modules/batch. Note that classes
used for items have to have an appropriate t oSt ri ng() method in order for this listener to be useful.

3.5.2.4 Restarts

A batch execution is considered a restart, if it was run already (with the same parameters) and there
was a (non skippable) failure or the batch has been stopped.

There are basically two ways to do a restart:
» Undo all changes and restart from scratch.
* Restore the state of that batch at the time the error occurred and continue processing.

The first approach has two major disadvantages: One is that depending on what the batch does,
reverting all of its changes can get quite complex. And you easily end up having implemented a batch
that is restartable, but not if it fails in the wrong step.

The second disadvantage is that if a batch runs for several hours and then it fails it has to start all over
again. And as the time for executing batches is usually quite limited, this can be problematic.

If reverting all changes is as easy as deleting all files in a given directory or something like that and the
expected duration for an execution of the batch is rather short, you might consider the option of always
starting at the beginning, otherwise you shouldn't.

Spring Batch supports implementing the second option. By default, if a batch is restarted with the same
parameters as a previous execution of this batch, then this new execution continues processing at the
step where the last execution was stopped or failed. If the last execution was already complete, an
exception is raised.

The step itself has to be implemented in a way so that it can restore its internal state, which is the main
drawback of this second option.

However, there are 'standard implementations' that are capable of doing so and these can easily be
adapted to your needs. They are introduced in the section on chunk processing.

For instructing Spring Batch to always restart a batch at the very beginning even though there has been
an execution of this batch with the same parameters already, set the r est art abl e attribute of the
Job element to false.

By default, setting this attribute to false means that the batch is not restartable (i.e. it cannot be started
with the same parameters once more). It would raise an error if there was attempt to do so, so that it
cannot be restarted where it left off.

We use our own JobLauncher (JobLauncher Wt hAdditional RestartCapabilities) as
described in the section on the general configuration to modify this behavior so that those batches
are always restarted from the first step on by adding an extra parameter (instead of raising an
exception), so that you do not have to take care of that yourself. So don't think of a batch marked with
restartabl e="fal se" as a batch that is not restartable (as most people would probably assume
just looking at the attribute) but as a batch that restarts always from the first step on.

Note that if a batch is restartable by restoring its internal state, it might not work correctly if the batch is
started with different parameters after it failed, which usually comes down to the same thing as restating
it from scratch. So, the batch has to be restarted and completed successfully before executing the next
regular 'run'. When scheduling batches, you should make that sure.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 43

Open Application Standard Platform for Java V2.3.0

3.5.2.5 Chunk Processing

Chunk processing is item based processing. Iltems can be bills, persons or whatever needs to be
processed. Those items are grouped into chunks of a fixed size and all items within such a chunk are
processed in one transaction. There is not one transaction for every single (small) item because there
would be too many commits which degrades performance.

All items of a chunk are read by an | t enReader (e.g. from a file or from database), processed by an
I t enProcessor (e.g. modified or converted) and written out as a whole by an I tenWWiter (e.g.to
a file or to database).

The size of a chunk is also called commit interval. One has to be careful , while choosing a large chunk
size: When a skip or retry occurs for a single item (see exception handling), the current transaction has
to be rolled back and all items of the chunk have to be reprocessed. This is especially a problem when
skips and retries occur more often and results in long runtimes.

The most important advantages of chunk processing are:
» good trade-off between size and number of transactions (configurable via commit size)

 transaction timeouts that do not have to be adapted for larger amounts of data that needs to be
processed (as there is always one transaction for a fixed number of items)

» an exception handling that is more fain-grained than aborting/restarting the whole batch (item based
skipping and retrying, see exception handling)

* logging items where exceptions occurred (which makes failure analysis much more easy)

Note that you could actually achieve similar results using tasklets as described below. However, you
would have to write many lines of additional code whereas you get these advantages out of the box
using chunk processing (logging exceptions and items where these exceptions occurred is an extension,

see example batch).

Also note that items should not be too "big". For example, one might consider processing all bills
within one month as one item. However, doing so you would not have those advantages any more.
For instance, you would have larger transactions, as there are usually quite a lot of bills per month
or payment method and if an exception occurs, you would not know which bill actually caused the
exception. Additionally you would lose control of commit size, since one commit would process many
bills hard coded and you cannot choose smaller chuncks.

Nevertheless, there are sometimes, situations where you cannot further "divide" items, e.g. when these
are needed for one single call to an external system (e.g. for creating a PDF of all bills within a certain
month, if PDFs are created by an external system). In this case you should do as much of the processing
as possible on the basis of "small" items and then add an extra step to do what cannot be done based
on these "small" items.

ItemReader

A reader has to implement the | t enReader interface, which has the following method:

public T read() throws Exception;

T is a type parameter of the | t enReader interface to be replaced with the type of items to be read.

The method returns all items (one at a time) that need to be processed or null if there are no more items.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 44

Open Application Standard Platform for Java V2.3.0

If an exception occurs during read, Spring Batch cannot tell which item caused the exception (as it has
not been read yet). That is why a reader should contain as little processing logic as possible, minimizing
the potential for failures.

Caching

By default, all items read by an | t enmReader are cached by Spring Batch. This is useful because when
a skippable exception occurs during processing of a chunk, all items (or at least those, that did not cause
the exception) have to be reprocessed. These items are not read twice but taken from the cache then.

This is often necessary, because if a reader saves it's current state in member variables (e.g. the current
position within a list of items) or uses some sort of cursor, these will be updated already and the next
calls of the read method would deliver the next items ready and not those that have to be reprocessed.

However this also means that when the items read by an | t enReader are entities, these might
be detached, because these might have been read in a different transaction. In some standard
implementations Spring Batch even manually detaches entities in | t enReader s.

In case these entities are to be modified it is a good practice that the | t enReader only reads IDs and
the | t enPr ocessor loads the entities for these IDs to avoid the problem.

Reading from Transactional Queues

In case the reader reads from a transactional queue (e.g. using JMS), you must not use caching,
because then an item might get processed twice: Once from cache and once from queue to where it
has been returned after the rollback. To achieve this, set r eader -t ransact i onal - queue="true"
in the chunk element in the step definition.

Moreover the equal s and hashCode methods of the class used for items have to be appropriately
implemented for Spring Batch to be able to identify items that were processed before unsuccessfully
(causing a rollback and thereby returning them to the queue). Otherwise the batch might be caught in
an infinite loop trying to process the same item over and over again (e.g. when the item is about to be
skipped, see exception handling).

Reading from the Database

When selecting data from a database, there is usually some sort of cursor used. One challenge is to
make this cursor not participate in the chunk’s transaction, because it would be closed after the first
chunk.

We will show how to use JDBC based cursors for | t emrReader implementations in later releases of
this documentation.

For JPA/JPQL based queries, cursors cannot be used, because JPA does not know of the concept of
a cursor. Instead it supports pagination as introduced in the chapter on the data access layer, which
can be used for this purpose as well. Note that pagination requires the result set to be sorted in an
unambiguous order to work reliably. The order itself is irrelevant as long as it does not change (you can
e.g. sort the entities by their primary key).

An |t emReader using pagination should inherit from the Abstract Pagi nglt emReader, which
already provides most of the needed functionality. It manages the internal state, i.e. the current position,
which can be correctly restored after a restart (when using an unambiguous order for the result set).

Classes inheriting from Abst r act Pagi ngl t emReader must implement two methods.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 45

Open Application Standard Platform for Java V2.3.0

The method doReadPage() performs the actual read of a page. The result is not returned (return type
is void) but used to replace the content of the 'results' instance variable (type: List).

Due to our layering concept and the persistence layer being the only place where access to the database
should take place, you should not directly execute a query in this method, but call a DAO, which itself
executes the query (using pagination).

Abst r act Pagi ngl t enReader provides methods for finding out the current position: use get Page()
for the current page and get PageSi ze() for the (max.) page size. These values should
be passed to the DAO as parameters. Note that the Abstract Pagi ngltenReader starts
counting pages from zero, whereas the Pagi nati onTo used for pagination (retrieved by calling
SearchCriteriaTo. get Pagi nati on()) starts counting from one, which is why you always have to
increment the page number by one.

The second method is doJunpToPage(i nt), which usually only requires an empty implementation.

Furthermore, you need to set the property pageSi ze, which specifies how many items should be read
at once. A page size that is as big as the commit interval usually results in the best performance.

The approach of using pagination for | t enmReader should not be used when items (usually entities)
are added or removed or modified by the batch step itself or in parallel with the execution of the batch
step so that the order changes, e.g. by other batches or due to operations started by clients (i.e. if the
batch is executed in online mode). In this case there might be items processed twice or not processed
at all. Be aware that due to hibernate’s Hi/Lo-Algorithm newer entities could get lower IDs than existing
IDs and you probably will not process all entities if you rely on strict ID monotony!

A simple solution for such scenarios would be to introduce a new flag 'processed' for the entities read
if that is an option (as it is also done in the example batch). The query should be rewritten then so that
only unprocessed items are read (additionally limiting the result set size to the number of items to be
processed in the current chunk, but not more).

Note that most of the standard implementations provided by Spring Batch do not fit to the layering
approach in OASP applications, as these mostly require direct accessto an Ent i t yManager ora JDBC
connection for example. You should think twice when using them and not break the layering concept.

Reading from Files

For reading simply structured files, e.g. for those in which every line corresponds to an item to be
processed by the batch, the Fl at Fi | el t enReader can be used. It requires two properties to be set:
The first one the Li neMapper (property | i neMapper), which is used to convert a line (i.e. a String) to
an item. It is a very simple interface which will not be discussed in more detail here. The second one
is the resource, which is actually the file to be read. When set in the XML, it is sufficient to specify the
path with a "file:" in front of it if it is a normal file from the file system.

In addition to that, the property | i nesToSki p (integer) can be set to skip headers for example. For
reading more than one line before for creating an item, a Recor dSepar at or Pol i cy can be used,
which will not be discussed in more detail here, too. By default, all lines starting with a '#' will be
considered to be a comment, which can be changed by changing the comment property (string array).
The encoding property can be used to set the encoding. AFl at Fi | el t enReader can restore its state
after restarts.

For reading XML files, you can use the St axEvent | t enReader (StAX is an alternative to DOM and
SAX), which will not be discussed in further detail here.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 46

Open Application Standard Platform for Java V2.3.0

In case the standard implementations introduced here do not fit your needs, you will need to implement
your own | tenReader. If this |t emrReader has some internal state (usually stored in member
variables), which needs to be restored in case of restarts, see the section on saving and restoring state
for information on how to do this.

ItemProcessor

A processor must implement the | t enPr ocessor interface, which has the following method:

public O process(l iten) throws Exception;

As you can see, there are two type parameters involved: one for the type of items received from the
I t enReader and one for the type of items passed to the | t emW i t er . These can be the same.

If an item has been selected by the | t emReader , but there is no need to further process this item (i.e.
it should not be passed to the I t emW i t er), the | t enPr ocessor can return null instead of an item.

Strictly interpreting chunk processing, the |t enPr ocessor should not modify anything but should
only give instructions to the I t emW i t er on how to do modifications. For entities however this is not
really practical and as it requires no special logic in case of rollbacks/restarts (as all modifications are
transactional), it is usually OK to modify them directly.

In contrast to this, performing accesses to files or calling external systems should only be done in
I tenReader /I temN it er and the code needed for properly handling failures (restarts for example)
should be encapsulated there.

It is usually a good practice to make |t enProcessor implementations stateless, as the process
method might be called more than once for one item (see the section on | t emReader why). If your
ItemProcessor really needs to have some internal state, see saving and restoring state on how to save
and restore the state for restarts.

Do not forget to implement use cases instead of implementing everything directly in the ItemProcessor
if the processing logic gets more complex.

ItemWriter

A writer has to implement the ltemWriter interface, which has the following method:

public void wite(List<? extends T> itens) Exception;

This method is called at the end of each chunk with a list of all (processed) items. It is not called once
for every item, because it is often more efficient doing 'bulk writes', e.g. when writing to files.

Note that this method might also be called more than once for one item (see the section on ltemReader’s
why).

At the end of the write method, there should always be a flush.

When writing to files, this should be obvious, because when a chunks completes, it is expected that
all changes are already there in case of restarts, which is not true if these changes were only buffered
but have not been written out.

When modifying the database, the flush method on the Ent i t yManager should be called, too (via a
DAO), because there might be changes not written out yet and therefore constraints were not checked

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 47

Open Application Standard Platform for Java V2.3.0

yet. This can be problematic, because Spring Batch considers all exceptions that occur during commit
as critical, which is why these exceptions cannot be skipped. You should be careful using deferred
constraints for the same reason.

Writing to Database or Transactional Queues

All changes made which are transactional can be conducted directly, there is no special logic needed
for restarts, because these changes are applied if and only if the chunk succeeds.

Writing to Files

For writing simply structured files, the FlatFileltenmWiter can be used. Similar to the
FlatFileltemReader it requires the resource (i.e. the file) and a Li neAggregator (property
| i neAggr egat or instead of the | i neMapper) to be set.

There are various properties that can be used of which we will only present the most important
ones here. As with the FlatFileltemReader, the encoding property is used to set the encoding. A
FlatFileHeaderCallback (property headerCallback) can be used to write a header.

The Fl atFil eltemW it er can restore its state correctly after restarts. In case, the files contain too
many lines (written out in chunks that did not complete successfully), these lines are removed before
continuing execution.

For writing XML files, you can use the St axEvent | t emW i t er , which will not be discussed in further
detail here.

Just as with | t enReader and | t enPr ocessor: In case your | t emM i t er has some internal state
this state is not managed by a standard implementation, see saving and restoring state on how to make
your implementation restartable (restart by restoring the internal state).

Saving and Restoring State

For saving and restoring (in case of restarts) state, e.g. saving and restoring values of member variables,
the ItemStream interface should be implemented by the | t enReader /I t enProcessor/ItenWiter,
which has the following methods:

public void open(ExecutionContext executionContext) throws |tenftreanException;
public voi d updat e(Executi onCont ext executionContext) throws |tenStreanException;
public void close() throws |tenttreanException;

The open method is always called before the actual processing starts for the current step and can be
used to restore state when restarting.

The Execut i onCont ext passed in as parameter is basically a map to be used to retrieve values set
before the failure. The method cont ai nsKey(St ri ng) can be used to check if a value for a given
key is set. If it is not set, this might be because the current batch execution is no restart or no value
has been set before the failure.

There are several getter methods for actually retrieving a value for a given key: get (Stri ng) for
objects (must be serializable), get I nt (String), get Long(String), get Doubl e(String) and
get String(String).These values will be the same as after the subsequent call to the update method
after the last chunk that completed successfully. Note that if you update the ExecutionContext outside
of the update method (e.g. in the read method of an | t enReader), it might contain values set in chunks
that did not finish successfully after restarts, which is why you should not do that.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 48

Open Application Standard Platform for Java V2.3.0

So the update method is the right place to update the current state. It is called after each chunk (and
before and after each step).

For setting values, there are several put methods: put (String, Object),putlint(String, int),
put Long(String, |ong),putDouble(String, double) andputString(String, String).
You can choose keys (St ri ng) freely as long as these are unique within the current step.

Note that when a skip occurs, the update method is sometimes but not always called, so you should
design your code in a way that it can deal with both situations.

The close method is usually not needed.

Do not misuse the ltemStream interface for purposes other than storing/restoring state. For instance,
do not use the update method for flushing, because you will not have the chance to properly
handle failure (e.g. skipping). For opening or closing a file handle, you should rather use a
StepExecutionListener as introduced in the section on listeners. The state can also be restored in the
beforeStep(ExecutionListener) method (instead of the open method).

Note that when a batch that always starts from scratch (i.e. the restartable attribute has been set to
false for the batch job) is restarted, the ExecutionContext will not contain any state from the previous
(failed) execution, so there is no use in storing the state in this case and usually no need to, of course,
because the batch will start all over again.

3.5.2.6 Tasklet based Processing

Tasklets are the alternative to chunk processing. In the section on chunk processing we already
mentioned the advantages of chunk processing as compared to tasklets. However, if only very few data
needs to be processed (within one transaction) or if you need to do some sort of bulk operation (e.g.
deleting all records from a database table), where the currently processed item does not matter and it
is unlikely that a 'fine grained' exception handling will be needed, tasklets might still be considered an
option. Note that for the latter use case you should still use more than one transaction, which is possible
when using tasklets, too.

Tasklets have to implement the interface with the same name, which has the following method:

publ i c Repeat St atus execut e(StepContribution contribution, ChunkContext chunkContext) throws Exception;

This method might be called several times. Every call is executed inside a new transaction automatically.
If processing is not finished yet and the execute method should be called once more, just use
RepeatStatus. CONTINUABLE as return value and Repeat St at us. FI NI SHED otherwise.

The St epContri buti on parameter can be used to set how many items have been processed
manually (which is done automatically using chunk processing), there is, however, usually no need to
do so.

The ChunkContext is similar to the Execut i onCont ext , but is only used within one chunk. If there
is a retry in chunk processing, the same context should be used (with the same state that this context
had when the exception occurred).

Note that tasklets serve as the basis for chunk processing internally. For chunk processing there is a
Spring Batch internal tasklet, which has an execute method that is called for every chunk and itself calls
It enReader, |t enProcessor andltemNiter.

That is the reason why a St epContri bution and a ChunkCont ext are passed to tasklets as
parameters, even though they are more useful in chunk processing. Moreover this is also the reason

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 49

Open Application Standard Platform for Java V2.3.0

why you have to use the tasklet element in the XML even though you want to specify a step that uses
chunk processing (see the example batch).

3.5.2.7 Exception Handling

As already mentioned, in chunk processing you can configure a step so that items are skipped or retried
when certain exceptions occur.

If retries are exhausted (by default, there is no retry) and the exception that occurred cannot be skipped
(by default, no exception can be skipped), the batch will fail (i.e. stop executing).

In tasklet based processing this cannot be done, the only chance is to implement the needed logic
yourself.

Skipping

Before skipping items you should think about what to do if a skip occurs. If a skip occurs, the exception
will be logged in the server log. However if no one evaluates those logs on a regular basis and informs
those who are affected further actions need to take place when implementing the batch.

Implement the Ski pLi st ener interface to be informed when a skip occurs. For example, you could
store a notification or send a message to someone. For skips that occurred in ItemReader’s there is no
information available about the item that was skipped (as it has not been read yet) which is why there
should be as little processing logic as possible in an | t emReader . It might also be a reason why you
might want to forbid to skip exceptions that might occur in readers.

Do not try to catch skipped exceptions and write something into the database in a new transaction
(e.g. a natification) instead of using a SkipListener, because a skipped item might be processed more
than once before actually being skipped (for example, if a skippable exception is thrown during a call
ofanltemN it er, Spring Batch does not know which item of the current chunk actually caused the
exception and therefore has to retry each item separately in order to know which item actually caused
the exception).

Skippable exception classes can be specified as shown below:

<bat ch: chunk ... skip-limt="10">
<bat ch: ski ppabl e- excepti on- cl asses>
<bat ch:include class="..."/>
<bat ch:include class="..."/>

</ bat ch: ski ppabl e- excepti on-cl asses>
</ bat ch: chunk>

The attribute skip-limit, which has to be set in case there is any skippable exception class configured,
is used to set how many items should be skipped at most. It is useful to avoid situations where many
items are skipped but the batch still completes successfully and no one notices this situation.

Skippable exception classes are specified by their fully qualified name (e.g. j ava. | ang. Excepti on),
each of such class set in its own include element as shown above. Subclasses of such classes are
also skipped.

To programmatically decide whether to skip an exception or not, you can set a skip policy as shown
below:

<bat ch: chunk ... skip-policy="mySkipPolicy">

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 50

Open Application Standard Platform for Java V2.3.0

The skip policy (here mySki pPol i cy) has to be a bean that implements the interface Ski pPol i cy
with the following method:

publ i c bool ean shoul dSki p(j ava. | ang. Throwabl e t,
int ski pCount)
throws Ski pLi mi t ExceededExcept i on

To skip the exception and continue processing, just return true and otherwise false.

The parameter ski pCount can be used for a skip limit. A Ski pLi mi t ExceededExcepti on should
be thrown if there should be no more skips. Note that this method is sometimes called with a skipCount
less than zero to test if an exception is skippable in general.

When a Ski pPolicy is set, the attribute skip-linmt and element ski ppabl e- excepti on-
cl asses are ignored.

You could of course skip every exception (using j ava. | ang. Excepti on as skippable exception
class). This is, however, not a good practice as it might easily result in an error in the code that is ignored
as the batch still completes successfully and everything seems to be fine. Instead, you should think
about what kind of exceptions might actually occur, what to do if they occur and if it is OK to skip them.
If an unexpected exception occurs, it is usually better to fail the batch execution and analyze the cause
of the exception before restarting the batch.

Exceptions that can occur ininstances of | t emW i t er that write something to file should not be skipped
unless the It emW i t er can properly deal with that. Otherwise there might be data written out even
though the according item is skipped, because operations in the file systems are not transactional.

Another situation where skips can be problematic is when calls to external interfaces are being made
and these calls change something "on the other side", as these calls are usually not transactional. So
be careful using skips here, too.

Retrying

For some types of exceptions, processing should be retried independently of weather the exception can
be skipped or would otherwise fail the batch execution.

For example, if there was a database timeout, this might be because there were too many requests
at the time the chunk was processed. And it is not unlikely that retrying to successfully complete the
chunk would succeed.

There are, of course, also exceptions where retrying does not make much sense. E.g. exceptions caused
by the business logic should be deterministic and therefore retrying does not make much sense in this
case.

Nevertheless, retrying every exception results in longer runtime but should in general be considered OK
if you do not know which exceptions might occur or do not have the time to think about it.

Retryable exception classes can be set similarly to setting skippable exception classes:

<bat ch: chunk ... retry-limt="3">
<bat ch: ret ryabl e- excepti on-cl asses>
<bat ch:include class="..."/>
<bat ch:include class="..."/>

</ batch: retryabl e- excepti on-cl asses>
</ bat ch: chunk>

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 51

Open Application Standard Platform for Java V2.3.0

Theretry-1limt attribute specifies how many times one individual item can be retried, as long as
the exception thrown is "retryable”.

As with skippable exception classes, retryable exception classes are set in include elements and their
subclasses are retried, too.

To programmatically decide, whether to retry an exception or not, you can use a Ret r yPol i cy, which
is not covered in more detail here.

Note that even if no retry is configured, an item might nevertheless be processed more than once. This
is because if a skippable exception occurs in a chunk, all items of the chunk that did not cause the
exception have to reprocessed, which is done in a separate transaction for every item, as the transaction
in which these items were processed in the first place was rolled back. And even if the exception is not
skippable, there is no guarantee that Spring Batch will not attempt to reprocess each item separately.

3.5.2.8 Listeners
Spring Batch provides various listeners for various events to be notified about.

For every listener there is an interface which can either be implemented by an ItemReader,
ItemProcessor, ltemWriter or Tasklet or by a separate listener class, which can be registered for a step
like this:

<bat ch: t askl et >
<bat ch: chunk .../>
<bat ch: | i st ener s>
<batch:listener ref="listenerl"/>
<batch:listener ref="1Iistener2"/>

</ batch:|i steners>
</ bat ch: t askl et >
<beans: bean id="listenerl" class=".."/>
<beans: bean id="listener2" class=".."/>

The most commonly use listener is probably the St epExecut i onLi st ener, which has methods that
are called before and after the execution of the step. It can be utilized e.g. for opening and closing files.

The following example shows how to use the listener:

public class MyListener inplenments StepExecutionListener {

public void beforeStep(StepExecution stepExecution) {
/| take actions before processing of the step starts

}

public ExitStatus afterStep(StepExecution stepExecution) {
try {
/'l take actions after processing is finished
} catch (Exception e) {
st epExecuti on. addFai | ur eExcepti on(e);
st epExecuti on. set St at us(Bat chSt at us. FAI LED) ;
return Exit Status. FAI LED. addExi t Descri ption(e);
}
return null;

}

In the afterStep(StepExecution) method, you can check the outcome of the batch
execution (completed, failed, stopped etc.) checking the Exi t St at us, which can be accessed via

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 52

Open Application Standard Platform for Java V2.3.0

St epExecuti on. get Exi t St at us(). You can even modify the Exi t St at us by returning a new
Exi t St at us, which is something we will not discuss in further detail here. If you do not want to modify
the Exi t St at us, just return null.

Throwing an exception in this method has no effect. If you want to fail the whole batch in case an
exception occurs, you have to do an exception handling as shown above. This does not apply to the
bef or eSt ep method.

For other types of listeners (among others the Ski pLi st ener mentioned already) see Spring Batch
Reference Documentation - 5. Configuring a Step - Intercepting Step Execution.

Note that exception handling for listeners is often a problem, because exceptions are mostly ignored,
which is not always documented very well. If an important part of a batch is implemented in listener
methods, you should always test what happens when exceptions occur. Or you might think about not
implementing important things in listeners ...

If you want an exception to fail the whole batch, you can always wrap it in a
Fat al St epExecut i onExcepti on, which will stop the execution.

3.5.2.9 Parameters

The section on starting and stopping batches already showed how to start a batch with parameters.

One way to get access to the values set is using the St epExecut i onLi st ener introduced in the
section on listeners like this:

public voi d beforeStep(StepExecution stepExecution) {

String paraneterVal ue = stepExecution. get JobExecution().getJobParaneters()
get String("paraneterKey");
}

There are getter methods for strings, doubles, longs and dates. Note that when set
via the ConmandLi neJobRunner or SpringBoot Bat chConmandLi ne, all parameters will
be of type string unless the type is specified in brackets after the parameter key, e.g.
processUnti |l (dat e)=2015/ 12/ 31. The parameter key here is processUnti | .

Another way is to inject values. In order for this to work, the bean has to have step scope, which means
there is a new object created for every execution of a batch step. It works like this:

<bean id="myProcessor" class="...M/IltenProcessor" scope="step">
<property name="paraneter" val ue="#{j obParaneters[' paraneterKey']}" />
<bean>

There has to be an appropriate setter method for the parameter of course.

As already mentioned in the section on restarts, a batch that successfully completed with a certain set
of parameters cannot be started once more with the same parameters as this would be considered a
restart, which is not necessary, because the batch was already finished.

So using no parameters for a batch would mean that it can be started until it completes successfully
once, which usually does not make much sense.

As batches are usually not executed more than once a day, we propose introducing a general dat e
parameter (without time) for all batch executions.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 53

http://docs.spring.io/spring-batch/reference/html/configureStep.html#interceptingStepExecution
http://docs.spring.io/spring-batch/reference/html/configureStep.html#interceptingStepExecution

Open Application Standard Platform for Java V2.3.0

It is advisable to add the date parameter automatically in the JobLauncher if it has not been set
manually, which can be done as shown below:

private static final String DATE_PARAMETER = "date";

i f (jobParaneters. getDate("DATE_PARAVETER') == null) {

Dat e dateW thout Tinme = new Date();

Cal endar cal = Cal endar. getl nstance();
cal . set Ti me(dat eWt hout Ti ne) ;

cal . set (Cal endar. HOUR_OF_DAY, 0);

cal . set (Cal endar. M NUTE, 0);

cal . set (Cal endar. SECOND, 0);

cal . set (Cal endar. M LLI SECOND, 0);
dateWthout Time = cal.getTinme();

j obPar anet ers = new JobPar anet er sBui | der (j obPar anet er s) . addDat e(
DATE_PARAMETER, dat eW't hout Ti ne) . t oJobPar anet ers();

. /1 using the jobParaneterslncrementer as shown above

Keep in mind that you might need to set the date parameter explicitly for restarts. Also note that
automatically setting the date parameter can be problematic if a batch is sometimes started before
and sometimes after midnight, which might result in a batch not being executed (as it has already
been executed with the same parameters), so at least for productive systems you should always set
it explicitly.

The date parameters can also be useful for controlling the business logic, e.g. a batch can process all
data that was created until the current date (as set in the date parameter), thereby giving a chance to
control how much is actually processed.

If your batch has to run more than once a day you could easily adapt the concept of timestamps. If you
are using an external batch scheduler, they often provide a counter for the execution and you might
automatically pass this instead of the date parameter.

3.5.2.10 Performance Tuning

Most important for performance are of course the algorithms that you write and how fast (and scalable)
these are, which is the same as for client processing. Apart from that, the performance of batches is
usually closely related to the performance of the database system.

If you are retrieving information from the database, you can have one complex query executed in the
I t enReader (via a DAO) retrieving all the information needed for the current set of items, or you can
execute further queriesinthe | t enPr ocessor (orltenWi t er) on a per item basis to retrieve further
information.

The first approach is usually by far more performant, because there is an overhead for every query being
executed and this approach results in less queries being executed. Note that there is a tradeoff between
performance and maintainability here. If you put everything into the query executed by an | t enReader ,
this query can get quite complex.

Using cursors instead of pagination as described in the section on ItemReaders can result in a better
performance for the same reason: When using a cursor, the query is only executed once, when using
pagination, the query is usually executed once per chunk. You could of course manually cache items,
however this easily leads to a high memory consumption.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 54

Open Application Standard Platform for Java V2.3.0

Further possibilities for optimizations are query (plan) optimization and adding missing database
indexes.

3.5.2.11 Testing

The Section Testing covers how to unit and integration test in detail. Therefore we focus here on testing
batches.

In order for the wunit test to run a batch job the unit test class must extend the
Abst ract Spri ngBat chl nt egrati onTest class. Two annotations are used to load the job’s
Appl i cati onCont ext :

@unW t h(SpringJUnit4d assRunner. cl ass) : Indicates that the class should use Spring’s JUnit
facilities

@Bpri ngApplicationConfiguration(classes = {.}, locations = {.}): Indicates
which JavaConfig classes (attribute cl asses) and/or XML files (attribute | ocat i ons) contain the
Appl i cati onCont ext . Use @ont ext Confi gurati on(..) if Spring Boot is not used.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@i rtiesContext(classMbde = C assMbde. AFTER_CLASS)

@\ct i veProfiles("db-plain")

public abstract class Abstract SpringBatchlntegrationTest {..}

@Bpr i ngAppl i cati onConfiguration(classes= { SpringBootBat chApp.class }, locations = { "cl asspath: confi g/
app/ bat ch/ beans- producti mport.xm " })
public class Product! nportJobTest extends AbstractSpringBatchlntegrationTest {..}

Testing Batch Jobs

For testing the complete run of a batch job from beginning to end involves following steps:
» set up a test condition

» execute the job

« verify the end result.

The test method below begins by setting up the database with test data. The test then
launches the Job using the | aunchJob() method. The | aunchJob() method is provided by the
JobLauncher Test Ui | s class.

Also provided by the utils class is | aunchJob(JobPar anet er s), which allows the test to give
particular parameters. The | aunchJob() method returns the JobExecut i on object which is useful
for asserting particular information about the Job run. In the case below, the test verifies that the Job
ended with Exi t St at us COVPLETED.

@pri ngAppl i cati onConfi guration(classes= { SpringBoot Bat chApp.class }, locations = { "cl asspath: confi g/
app/ bat ch/ beans- producti nport.xm" })
public class Product!nportJobTest extends Abstract SpringBatchlntegrationTest {

@ nj ect
private Job bill ExportJob;

@est

public void shoul dExportBills() throws Exception {
JobExecution jobExecution = getJobLauncher Test Util s(this.bill ExportJob).I|aunchdob();
assert That (j obExecuti on. get Exi t Status()).i sEqual To(Exi t St at us. COVPLETED) ;

}

}

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 55

Open Application Standard Platform for Java V2.3.0

Note that when using the | aunchJob() method, the batch execution will never be considered as a
restart (i.e. it will always start from scratch). This is achieved by adding a unique (random) parameter.

This is not true for the method | aunchJob(JobPar anet er s) however, which will result in an
exception if the test is executed twice or a batch is executed in two different tests with the same
parameters.

We will add methods for appropriately handling this situation in future releases of OASP. Until then
you can help yourself by using the method get Uni queJobPar anet er s() and then add all required
parameters to those parameters returned by the method (as shown in the section on parameters).

Also note that even if skips occurred, the ExitStatus is still COMPLETED. That is one reason why you
should always check whether the batch did what it was supposed to do or not.

Testing Individual Steps

For complex batch jobs individual steps can be tested. For example to test a cr eat eCsvFi | e, run just
that particular Step. This approach allows for more targeted tests by allowing the test to set up data for
just that step and to validate its results directly.

JobExecution jobExecution = getJobLauncher TestUtil s(this.bill ExportJob).|aunchStep(“createCsvFile”);

Validating Output Files

When a batch job writes to the database, it is easy to query the database to verify the output. To
facilitate the verification of output files Spring Batch provides the class Assert Fi | e. The method
assert Fi | eEqual s takes two File objects and asserts, line by line, that the two files have the same
content. Therefore, it is possible to create a file with the expected output and to compare it to the actual
result:

private static final String EXPECTED FILE = "cl asspat h: expect ed. csv";
private static final String OUTPUT_FILE = " file:./tenp/output.csv";
AssertFil e. assertFi | eEqual s(new Fi | eSyst enResour ce(EXPECTED_FI LE), new Fi | eSyst enResour ce(OUTPUT_FI LE)) ;

Testing Restarts

Simulating an exception at an arbitrary method in the code can be done relatively easy using AspectJ.
Afterwards you should restart the batch and check if the outcome is still correct.

Note that when using the | aunchJob() method, the batch is always started from the beginning (as
already mentioned). Use the | aunchJob(JobPar anet er s) instead with the same parameters for the
initial (failing) execution and for the restart.

Test your code thoroughly. There should be at least one restart test for every step of the batch job.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 56

https://eclipse.org/aspectj/

Open Application Standard Platform for Java V2.3.0

4. Guides

4.1 Dependency Injection

Dependency injection is one of the most important design patterns and is a key principle to a modular and
component based architecture. The Java Standard for dependency injection is javax.inject (JSR330)
that we use in combination with JISR250.

There are many frameworks which support this standard including all recent Java EE application servers.
We recommend to use Spring (also known as springframework) that we use in our example application.
However, the modules we provide typically just rely on JSR330 and can be used with any compliant
container.

4.1.1 Key Principles

A Bean in CDI (Contexts and Dependency-Injection) or Spring is typically part of a larger component
and encapsulates some piece of logic that should in general be replaceable. As an example we can
think of a Use-Case, Data-Access-Object (DAO), etc. As best practice we use the following principles:

» Separation of APl and implementation
We create a self-contained API documented with JavaDoc. Then we create an implementation of
this API that we annotate with @\armed. This implementation is treated as secret. Code from other
components that wants to use the implementation shall only rely on the API. Therefore we use
dependency injection via the interface with the @ nj ect annotation.

» Stateless implementation
By default implementations (CDI-Beans) shall always be stateless. If you store state information in
member variables you can easily run into concurrency problems and nasty bugs. This is easy to avoid
by using local variables and separate state classes for complex state-information. Try to avoid stateful
CDI-Beans wherever possible. Only add state if you are fully aware of what you are doing and properly
document this as a warning in your JavaDoc.

» Usage of JSR330
We use javax.inject (JSR330) and JSR250 as a common standard that makes our code portable
(works in any modern Java EE environment). However, we recommend to use the springframework
as container. But we never use proprietary annotations such as @\ut owi r ed instead of standardized
annotations like @ nj ect . Generally we avoid proprietary annotations in business code (common and

logic layer).

e Simple Injection-Style
In general you can choose between constructor, setter or field injection. For simplicity we recommend
to do private field injection as it is very compact and easy to maintain. We believe that constructor
injection is bad for maintenance especially in case of inheritance (if you change the dependencies
you need to refactor all sub-classes). Private field injection and public setter injection are very similar
but setter injection is much more verbose (often you are even forced to have javadoc for all public
methods). If you are writing re-usable library code setter injection will make sense as it is more flexible.
In a business application you typically do not need that and can save a lot of boiler-plate code if you
use private field injection instead. Nowadays you are using container infrastructure also for your tests
(see spring integration tests) so there is no need to inject manually (what would require a public setter).

» KISS

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 57

http://docs.oracle.com/javaee/6/api/javax/inject/package-summary.html
http://docs.oracle.com/javaee/5/api/javax/annotation/package-summary.html
http://spring.io/

Open Application Standard Platform for Java V2.3.0

To follow the KISS (keep it small and simple) principle we avoid advanced features (e.g. AOP, non-
singleton beans) and only use them where necessary.

4.1.2 Example Bean

Here you can see the implementation of an example bean using JSR330 and JSR250:

@\aned

public class MyBeanl npl inplenents MyBean {
@ nj ect
private MyQt her Bean nmyQ her Bean;

@ost Const r uct
public void init() {
/1 initialization if required (otherwise onmit this nethod)

}

@r eDest r oy
public void dispose() {
/| shutdown bean, free resources if required (otherwi se onmt this nethod)

}

}

It depends on MyQt her Bean that should be the interface of an other component that is injected into the
field because of the @ nj ect annotation. To make this work there must be exactly one implementation
of MyQt her Bean in the container (in our case spring). In order to put a Bean into the container we use
the @Naned annotation so in our example we put MyBeanl npl into the container. Therefore it can be
injected into all setters that take the interface MyBean as argument and are annotated with @ nj ect .

In some situations you may have an Interface that defines a kind of "plugin” where you can have multiple
implementations in your container and want to have all of them. Then you can request a list with all
instances of that interface as in the following example:

@ nj ect
private List<M/Converter> converters;

Please note that when writing library code instead of annotating implementation with @Named it is better
to provide @onf i gur at i on classes that choose the implementation via @ean methods (see @Bean
documentation). This way you can better "export" specific features instead of relying library users to do
a component-scan to your library code and loose control on upgrades.

4.1.3 Bean configuration

Wiring and Bean configuration can be found in configuration guide.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 58

http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html

Open Application Standard Platform for Java V2.3.0

4.2 Configuration

An application needs to be configurable in order to allow internal setup (like CDI) but also to allow
externalized configuration of a deployed package (e.g. integration into runtime environment). Using
Spring Boot (must read: Spring Boot reference) we rely on a comprehensive configuration approach
following a "convention over configuration" pattern. This guide adds on to this by detailed instructions
and best-practices how to deal with configurations.

In general we distinguish the following kinds of configuration that are explained in the following sections:

* Internal Application configuration maintained by developers

» Externalized Environment configuration maintained by operators

» Externalized Business configuration maintained by business administrators

4.2.1 Internal Application Configuration

The application configuration contains all internal settings and wirings of the application (bean wiring,
database mappings, etc.) and is maintained by the application developers at development time. There
usually is a main configuration registered with main Spring Boot App, but differing configurations to
support automated test of the application can be defined using profiles (not detailed in this guide).

4.2.1.1 Spring Boot Application

The OASP recommends using spring-boot to build web applications. For a complete documentation
see the Spring Boot Reference Guide.

With spring-boot you provide a simple main class (also called starter class) like this:

@pr i ngBoot Appl i cati on(excl ude = { Endpoi nt Aut oConfi guration. cl ass })

@ntityScan(basePackages = { "io0.oasp.gastronony.restaurant" }, basePackageC asses =
{ AdvancedRevi si onEntity.class })

@nabl ed obal Met hodSecurity(jsr250Enabl ed = true)

public class SpringBootApp {

public static void main(String[] args) {
SpringApplication. run(SpringBoot App. cl ass, args);
}

}

In an OASP application this main class is always located in the <basepackage> of the application
package namespace (see package-conventions). This is because a spring boot application will
automatically do a classpath scan for components (spring-beans) and entities in the package where the
application main class is located including all sub-packages. You can use the @onponent Scan and
@nt i t yScan annotations to customize this behaviour.

4.2.1.2 Standard beans configuration

For basic bean configuration we rely on spring boot using mainly configuration classes and only
occasionally XML configuration files. Some key principle to understand Spring Boot auto-configuration
features:

» Spring Boot auto-configuration attempts to automatically configure your Spring application based on
the jar dependencies and annotated components found in your source code.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 59

http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot
http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/

Open Application Standard Platform for Java V2.3.0

» Auto-configuration is non-invasive, at any point you can start to define your own configuration to
replace specific parts of the auto-configuration by redefining your identically named bean (see also
excl ude attribute of @pr i ngBoot Appl i cat i on in example code above).

Beans are configured via annotations in your java code (see dependency-injection).

For technical configuration you will typically write additional spring config classes annotated with
@onponent that provide bean implementations via methods annotated with @ean. See spring
@Bean documentation for further details. Like in XML you can also use @nport to make a
@Configuration class include other configurations.

4.2.1.3 XML-based beans configuration

It is still possible and allowed to provide (bean-) configurations using XML, though not recommended.
These configuration files are no more bundled via a main xml config file but loaded individually from
their respective owners, e.g. for unit-tests:

@pri ngAppl i cati onConfiguration(classes = { SpringBootApp.class }, locations = { "classpath:/config/app/
bat ch/ beans- producti nport.xm " })
public class Product!nportJobTest extends Abstract SpringBatchlntegrationTest {

Configuration XML-files reside in an adequately named subfolder of:
src/ mai n/ resour ces/ app
4.2.1.4 Batch configuration

In the directory sr ¢/ mai n/ r esour ces/ confi g/ app/ bat ch we place the configuration for the batch
jobs. Each file within this directory represents one batch job. See batch-layer for further details.

4.2.1.5 Security configuration

The abstract base class BaseWebSecur i t yConf i g should be extended to configure web application
security thoroughly. A basic and secure configuration is provided which can be overridden or extended
by subclasses. Subclasses must use the @r of i | e annotation to further discriminate between beans
used in production and testing scenarios. See the following example:

How to extend BaseWebSecuri t yConfi g for Production and Test.

@onfiguration

@Enabl eWebSecurity

@rofile(CaspProfile.JUNI T_TEST)

public class Test WbSecurityConfig extends BaseWebSecurityConfig {...}

@onfiguration

@nabl eWebSecurity

@rofile(CaspProfile. NO TEST)

public class WbSecurityConfig extends BaseWebSecurityConfig {...}

See WebSecurityConfig.

4.2.1.6 WebSocket configuration

A websocket endpoint is configured within the business package as a Spring configuration class. The
annotation @nabl eWebSocket MessageBr oker makes Spring Boot registering this endpoint.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 60

http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
http://docs.spring.io/spring-javaconfig/docs/1.0.0.M4/reference/html/ch02s02.html
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/general/configuration/WebSecurityConfig.java#L106

Open Application Standard Platform for Java V2.3.0

package i 0. oasp. gastronony.restaurant. sal esmanagenent . websocket . confi g;

@onfiguration
@nabl eWebSocket MessageBr oker
public class WbSocket Confi g extends Abstract WbSocket MessageBr oker Confi gurer {

4.2.1.7 Database Configuration

To choose database of your choice , set spring.profiles.active=XXX in src/ mai n/ r esour ces/
confi g/ application. properties. Also, one has to set all the active spring profiles in this
application.properties and not in any of the other application.properies.

4.2.2 Externalized Configuration

Externalized configuration is a configuration that is provided separately to a deployment package and
can be maintained undisturbed by redeployments.

4.2.2.1 Environment Configuration

The environment configuration contains configuration parameters (typically port numbers, host names,
passwords, logins, timeouts, certificates, etc.) specific for the different environments. These are under
the control of the operators responsible for the application.

The environment configuration is maintained in appl i cati on. properti es files, defining various
properties (see common application properties for a list of properties defined by the spring framework).
These properties are explained in the corresponding configuration sections of the guides for each topic:

» persistence configuration

» service configuration

* logging guide

For a general understanding how spring-boot is loading and boostrapping your
appl i cation. properti es see spring-boot external configuration. The following properties files are
used in every OASP application:

e src/mai n/resources/ application. properties providing a default configuration - bundled
and deployed with the application package. It further acts as a template to derive a tailored minimal
environment-specific configuration.

e src/ mai n/resources/config/application.properties providing additional properties
only used at development time (for all local deployment scenarios). This property file is excluded from
all packaging.

» src/test/resources/config/application.properties providing additional properties
only used for testing (JUnits based on spring test).

For other environments where the software gets deployed such as test, acceptance and
producti on you need to provide a tailored copy of appli cation. properties. The location
depends on the deployment strategy:

» standalone runnable Spring Boot App using embedded tomcat: config/
appl i cation. properti es under the installation directory of the spring boot application.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 61

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

Open Application Standard Platform for Java V2.3.0

 dedicated tomcat (one tomcat per app): $CATALI NA BASE/Ii b/ confi g/
appl i cation. properties

» tomcat serving a number of apps (requires expanding the wars): $CATALI NA BASE/ webapps/
<app>/ VEEB- | NF/ cl asses/ confi g

In this application.properties you only define the minimum properties that are
environment specific and inherit everything else from the bundled src/main/resources/
appl i cation. properties. Inany case, make very sure that the classloader will find the file.

Make sure your properties are thoroughly documented by providing a comment to each property. This
inline documentation is most valuable for your operating department.

4.2.2.2 Business Configuration

The business configuration contains all business configuration values of the application, which can be
edited by administrators through the GUI. The business configuration values are stored in the database
in key/value pairs.

The database table busi ness_confi gur ati on has the following columns:
« ID

* Property name

» Property type (Boolean, Integer, String)

» Property value

» Description

According to the entries in this table, the administrative GUI shows a generic form to change business
configuration. The hierachy of the properties determines the place in the GUI, so the GUI bundles
properties from the same hierarchy level and name. Boolean values are shown as checkboxes, integer
and string values as text fields. The properties are read and saved in a typed form, an error is raised if
you try to save a string in an integer property for example.

We recommend the following base layout for the hierarchical business configuration:

conponent . [subconponent]. [subconponent]. propertynane

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 62

Open Application Standard Platform for Java V2.3.0

4.3 Logging

We use SLF4J as API for logging. The recommended implementation is Logback for which we provide
additional value such as configuration templates and an appender that prevents log-forging and
reformatting of stack-traces for operational optimizations.

4.3.1 Usage

4.3.1.1 Maven Integration

In the pom.xml of your application add this dependency (that also adds transitive dependencies to SLF4J
and logback):

<dependency>
<gr oupl d>i 0. oasp. j ava</ gr oupl d>
<artifact|d>oasp4j-1ogging</artifactld>

<ver si on>1. 0. 0</ ver si on>
</ dependency>

4.3.1.2 Configuration

The configuration file is logback.xml and is to put in the directory src/main/resources of your main
application. For details consult the logback configuration manual. OASP4J provides a production ready
configuration here. Simply copy this configuration into your application in order to benefit from the
provided operational and aspects. We do not include the configuration into the oasp4j-logging module
to give you the freedom of customizations (e.g. tune log levels for components and integrated products
and libraries of your application).

The provided logback.xml is configured to use variables defined on the config/application.properties file.
On our example, the log files path point to ../logs/ in order to log to tomcat log directory when starting
tomcat on the bin folder. Change it according to your custom needs.

config/application.properties.

| og.dir=../1ogs/

4.3.1.3 Logger Access

The general pattern for accessing loggers from your code is a static logger instance per class. We pre-
configured the development environment so you can just type LOG and hit [ctrl][space] (and then [arrow
up]) to insert the code pattern line into your class:

public class Myd ass {
private static final Logger LOG = Logger Factory. get Logger (M/d ass. cl ass)

Please note that in this case we are not using injection pattern but use the convenient static alternative.
This is already a common solution and also has performance benefits.

4.3.1.4 How to log

We use a common understanding of the log-levels as illustrated by the following table. This helps for
better maintenance and operation of the systems by combining both views.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 63

http://www.slf4j.org/
http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html
https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-server/src/main/resources/logback.xml

Open Application Standard Platform for Java V2.3.0

Table 4.1. Log-levels

Log-level Description Impact Active Environments
FATAL Only used for fatal Operator has to react all
errors that prevent the immediately
application to work at
all (e.g. startup fails
or shutdown/restart
required)
ERROR An abnormal error Operator should check all
indicating that the for known issue and
processing failed due otherwise inform
to technical problems. development
WARNING A situation where No direct reaction all
something worked not required. Used for
as expected. E.g. a problem analysis.
business exception or
user validation failure
occurred.
INFO Important information No direct reaction all
such as context, required. Used for
duration, success/ analysis.
failure of request or
process
DEBUG Development No direct reaction development and
information that required. Used for testing
provides additional analysis.
context for debugging
problems.
TRACE Like DEBUG but No direct reaction none (turned off by

exhaustive information
and for code that is run
very frequently. Will
typically cause large
log-files.

required. Used for
problem analysis.

default)

Exceptions (with their stacktrace) should only be logged on FATAL or ERROR level. For business
exceptions typically a WARNING including the message of the exception is sufficient.

4.3.2 Operations

4.3.2.1 Log Files

We always use the following log files:

» Error Log: Includes log entries to detect errors.

» Info Log: Used to analyze system status and to detect bottlenecks.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

64

Open Application Standard Platform for Java V2.3.0

» Debug Log: Detailed information for error detection.

The log file name pattern is as follows:

<LOGTYPE>_| og_<HOST>_<APPL| CATI ON>_<TI MESTAMP>. | og

Table 4.2. Segments of Logfilename

Element Value Description

<LOGTYPE> info, error, debug Type of log file

<HOST> e.g. mywebserver01 Name of server, where logs are
generated

<APPLICATION> e.g. myapp Name of application, which
causes logs

<TIMESTAMP> YYYY-MM-DD_HHO00 date of log file

Example: error_log_mywebserver01_myapp_2013-09-16_0900.log
Error log from mywebserver01 at application myapp at 16th September 2013 9pm.
4.3.2.2 Output format

We use the following output format for all log entries to ensure that searching and filtering of log entries
work consistent for all lodfiles:

[D: <timestanp>] [P: <priority (Level)>] [C <NDC>][T: <thread>][L: <logger name>]-[M <nmessage>]

» D: Date (1SO8601: 2013-09-05 16:40:36,464)

P: Priority (the log level)

» C: Correlation ID (ID to identify users across multiple systems, needed when application is distributed)

T: Thread (Name of thread)
» L: Logger name (use class hame)
» M: Message (log message)

Example:

[D: 2013-09-05 16:40: 36,464] [P: DEBUG [C. 12345] [T: main] [L: ny.package. WyCl ass]-[M M nessage...]

4.3.3 Security

In order to prevent log forging attacks we provide a special appender for logback in oasp4j-logging. If
you use it (see) you are safe from such attacks.

4.3.4 Correlating separate requests

In order to correlate separate HTTP requests to services belonging to the same user / session, we
provide a servlet filter called "DiagnosticContextFilter". This filter first searches for a configurable HTTP

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 65

https://www.owasp.org/index.php/Log_Forging
https://github.com/oasp/oasp4j/tree/oasp4j-logging

Open Application Standard Platform for Java V2.3.0

header containing a correlation id. If none was found, it will generate a new correlation id. By default
the HTTP header used is called "Correlationid".

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 66

Open Application Standard Platform for Java V2.3.0

4.4 Security

Security is todays most important cross-cutting concern of an application and an enterprise IT-
landscape. We seriously care about security and give you detailed guides to prevent pitfalls,
vulnerabilities, and other disasters. While many mistakes can be avoided by following our guidelines
you still have to consider security and think about it in your design and implementation. The security
guide will not only automatically prevent you from any harm, but will provide you hints and best practices
already used in different software products.

An important aspect of security is proper authentication and autorization as described in access-control.
In the following we discuss about potential vulnerabilities and protection to prevent them.

4.4.1 Vulnerabilities and Protection

Independent from classical authentication and authorization mechanisms there are many common
pitfalls that can lead to vulnerabilities and security issues in your application such as XSS, CSRF, SQL-
injection, log-forging, etc. A good source of information about this is the OWASP. We address these
common threats individually in security sections of our technological guides as a concrete solution to
prevent an attack typically depends on the according technology. The following table illustrates common
threats and contains links to the solutions and protection-mechanisms provided by the OASP:

Table 4.3. Security threats and protection-mechanisms

Threat Protection Link to details

Al Injection validate input, escape output, SQL Injection
use proper frameworks

A2 Broken Authentication and encrypt all channels, use a Authentication

Session Management central identity management

with strong password-policy

A3 XSS prevent injection (see Al) for client-layer
HTML, JavaScript and CSS and
understand same-origin-policy

A4 Insecure Direct Object Using direct object references logic-layer
References (IDs) only with appropriate
authorization

A5 Security Misconfiguration Use OASP application template application template
and guides to avoid

A6 Sensitive Data Exposure Use secured exception facade, REST exception handling
design your data model
accordingly
A7 Missing Function Level Ensure proper authorization for Method authorization
Access Control all use-cases, use @enyAl |

as default to enforce

A8 CSRF secure mutable service service-layer security
operations with an explicit
CSRF security token sent in

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 67

https://www.owasp.org
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://repo1.maven.org/maven2/io/oasp/java/templates/
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

Open Application Standard Platform for Java V2.3.0

Threat

A9 Using Components with
Known Vulnerabilities

A10 Unvalidated Redirects and

Forwards

Protection

HTTP header and verified on
the server

subscribe to security
newsletters, recheck products
and their versions continuously,
use OASP dependency
management

Avoid using redirects and
forwards, in case you need
them do a security audit on the
solution.

Link to details

CVE newsletter and
dependency check

OASP proposes to use rich-
clients (SPA/RIA). We only use
redirects for login in a safe way.

Log-Forging Escape newlines in log logging security
messages
4.4.2 Tools

4.4.2.1 Dependency Check

To address A9 Using Components with Known Vulnerabilities we integrated OWASP dependency check
into the OASP maven build. If you build an OASP application (sample or any app created from our app-
template) you can activate dependency check with the securi ty profile:

mvn clean install -P security

This does not run by default as it causes a huge overhead for the build performance. However , consider
to build this in your CI at least nightly. After the dependency check is performed , you will find the
results in t ar get / dependency- check-report. ht M of each module. The report will also always
be generated when the site is build (nvn site).

4.4.2.2 Penetration Testing

For penetration testing (testing for vulnerabilities) of your web application, we recommend the following
tools:

ZAP (OWASP Zed Attack Proxy Project)

» sglmap (or HQLmap)

* nNma

» See the marvellous presentation Toolbox of a security professional from Christian Schneider.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 68

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://cve.mitre.org/news/newsletter.html
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Log_Forging
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://sqlmap.org/
https://github.com/PaulSec/HQLmap
https://nmap.org/
https://www.Christian-Schneider.net/downloads/JAX-Talk-Werkzeugkasten-Security-Professional.pdf
https://www.Christian-Schneider.net

Open Application Standard Platform for Java V2.3.0

4.5 Access-Control

Access-Control is a central and important aspect of Security. It consists of two major aspects:
* (Who tries to access?)

* (Is the one accessing allowed to do what he wants to do?)
4.5.1 Authentication
Definition:

Authentication is the verification that somebody interacting with the system is the actual
subject for whom he claims to be.

The one authenticated is properly called subject or principal. However, for simplicity we use the common
term user even though it may not be a human (e.g. in case of a service call from an external system).

To prove his authenticity the user provides some secret called credentials. The most simple form of
credentials is a password.

Note

Please never implement your own authentication mechanism or credential store. You have to
be aware of implicit demands such as salting and hashing credentials, password life-cycle with
recovery, expiry, and renewal including email notification confirmation tokens, central password
policies, etc. This is the domain of access managers and identity management systems. In a
business context you will typically already find a system for this purpose that you have to integrate
(e.g. via LDAP).

oasp4j uses Spring Security as a framework for authentication purposes.
Therefore you need to define an authentication provider implementing the
org. springframework. security. aut henti cati on. Aut henti cati onProvi der interface
from Spring Security. The implemented authentication provider can be registered as main authentication
provider using the authentication-manager declaration.

<beans: beans xm ns="http://ww. springframework. or g/ schema/ security" xml ns:beans="http://
www. spri ngfranmewor k. or g/ schena/ beans" >

<beans: bean id="restaurant Aut henti cati onProvi der"
cl ass="i 0. oasp. gastronony. rest aur ant. gener al . conmon. api . securi ty. Servl et Aut henti cati onProvi der"/ >
<aut hentication-manager alias="restaurantAuthenticati onManager" erase-credential s="fal se">

<aut henti cation-provi der ref="restaurantAuthenticati onProvider"/>

</ aut henti cati on- manager >
</ beans: beans>

4.5.1.1 Mechanisms
Basic

Http-Basic authentication can be easily implemented with this configuration:

<http auto-config="true" use-expressions="true">

<ht t p- basi ¢/ >

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 69

http://docs.oracle.com/javase/7/docs/api/java/security/Principal.html

Open Application Standard Platform for Java V2.3.0

</ http>

Form Login
For a form login the spring security implementation might look like this:

<http auto-config="fal se" use-expressions="true">

<form | ogin | ogin-page="/1o0gin" authentication-failure-url="/1o0gin?authentication_failed=1"
| ogi n-processing-url="/j_spring_security_|login" default-target-url="/services"/>
<l ogout |ogout-url="/j_spring_security_logout" |ogout-success-url="/1ogin?l ogout=1" invalidate-
session="true"/>
<access- deni ed- handl er error-page="/1o0gi n?access_deni ed=1"/>

</ http>

The interesting part is, that there is a login-processing-url, which should be adressed to handle the
internal spring security authentication and similarly there is a logout-url, which has to be called to logout
a user.

4.5.1.2 Preserve original request anchors after form login redirect

Spring Security will automatically redirect any unauthorized access to the defined login-page. After
sucuessful login, the user will be redirected to the original requested URL. The only pitfall is, that anchors
in the request URL will not be transmitted to server and thus cannot be restored after successful login.
Therefore the oasp4j-security module provides the RetainAnchorFilter, which is able to inject javascript
code to the source page and to the target page of any redirection. Using javascript this filter is able to
retrieve the requested anchors and store them into a cookie. Heading the target URL this cookie will
be used to restore the original anchors again.

To enable this mechanism you have to integrate the RetainAnchorFilter as follows: First, declare the
filter with

e storeUrl Pattern: an regular expression matching the URL, where anchors should be stored
e restoreUrl Pattern:anregular expression matching the URL, where anchors should be restored

» cooki eName: the name of the cookie to save the anchors in the intermediate time

<beans: bean id="retai nAnchorFilter" class="io0.0asp.nodul e. security.common. web. api . Ret ai nAnchorFilter">
<l-- first [~]+ part describes host nane and possibly port, second [*/]+ is the application nane --

<beans: property name="storeUr| Pattern" value="http://[~/]+/ [~]+/login. *"/>
<beans: property name="restoreUr | Pattern" value="http://[~]+ [N]+ .*"]>
<beans: property name="cooki eName" val ue=" TARGETANCHOR'/ >

</ beans: bean>

Second, register the filter as first filter in the request filter chain. You might want to use the
before="FIRST" or after="FIRST" attribute if you have multiple request filters, which should be run before
the default filters.

simple Spring Security filter insertion.

<http auto-config="fal se" use-expressi ons="true">
<customfilter ref="retai nAnchorFilter" after="FIRST"/>
</ http>

Nevertheless, the oasp4j follows a different approach. The simple interface of Spring Security for
inserting custom filters as stated above is driven by a relative alignment of the different filters been

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 70

Open Application Standard Platform for Java V2.3.0

executed. You relatively can insert custom filters before or after existing ones and also at the beginning
or at the end. You might easily see, that the real filter chain will get more and more invisible. Thus the
oasp4j follows the default ordering of the Spring Security filter chain, such that it gets more transparent
for any developer, which filters will be executed in which order and at which position a new custom filter
may be inserted.

This documentation depends on Spring Security v3.2.5.RELEASE:

» general filter ordering

» detailed filter ordering

These lists will be maintained each release, which will include a Spring Security upgrade. Thus first,
we will not loose any changes from the possibly updated default filter chain of Spring Security. Second,
due to the absolute declaration of the filter order, you might not get any strange behavior in your system
after upgrading to a new version of Spring Security.

4.5.1.3 Users vs. Systems

If we are talking about authentication we have to distinguish two forms of principals:
* human users

» autonomous systems

While e.g. a Kerberos/SPNEGO Single-Sign-On makes sense for human users it is pointless for
authenticating autonomous systems. So always keep this in mind when you design your authentication
mechanisms and separate access for human users from access for systems.

4.5.2 Authorization
Definition:

Authorization is the verification that an authenticated user is allowed to perform the
operation he intends to invoke.

4.5.2.1 Clarification of terms

For clarification we also want to give a common understanding of related terms that have no unique
definition and consistent usage in the wild.

Table 4.4. Security terms related to authorization

Term Meaning and comment

Permission A permission is an object that allows a principal to perform an operation in the
system. This permission can be granted (give) or revoked (taken away). Sometimes
people also use the term right what is actually wrong as a right (such as the right to
be free) can not be revoked.

Group We use the term group in this context for an object that contains permissions. A
group may also contain other groups. Then the group represents the set of all
recursively contained permissions.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 71

http://docs.spring.io/spring-security/site/docs/3.2.5.RELEASE/reference/htmlsingle/#filter-ordering
http://docs.spring.io/spring-security/site/docs/3.2.5.RELEASE/reference/htmlsingle/#ns-custom-filters

Open Application Standard Platform for Java V2.3.0

Term Meaning and comment

Role We consider a role as a specific form of group that also contains permissions. A role
identifies a specific function of a principal. A user can act in a role.

For simple scenarios a principal has a single role associated. In more complex
situations a principal can have multiple roles but has only one active role at a time
that he can choose out of his assigned roles. For KISS it is sometimes sufficient

to avoid this by creating multiple accounts for the few users with multiple roles.
Otherwise at least avoid switching roles at runtime in clients as this may cause
problems with related states. Simply restart the client with the new role as parameter
in case the user wants to switch his role.

Access Any permission, group, role, etc., which declares a control for access management.
Control

4.5.2.2 Suggestions on the access model

The access model provided by oasp4j-security follows this suggestions:

« Each Access Control (permission, group, role, ...) is uniquely identified by a human readable string.
» We create a unique permission for each use-case.

» We define groups that combine permissions to typical and useful sets for the users.

» We define roles as specific groups as required by our business demands.

» We allow to associate users with a list of Access Controls.

» For authorization of an implemented use case we determine the required permission. Furthermore,
we determine the current user and verify that the required permission is contained in the tree spanned
by all his associated Access Controls. If the user does not have the permission we throw a security
exception and thus abort the operation and transaction.

« We try to avoid negative permissions, that is a user has no permission by default but only those
granted to him additively permit him for executing use cases.

» Technically we consider permissions as a secret of the application. Administrators shall not fiddle
with individual permissions but grant them via groups. So the access management provides a list
of strings identifying the Access Controls of a user. The individual application itself contains these
Access Controls in a structured way, whereas each group forms a permission tree.

4.5.2.3 oasp4j-security

The OASP provides a ready to use module oasp4j-security that is based on spring-security and makes
your life a lot easier.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 72

http://projects.spring.io/spring-security/

Open Application Standard Platform for Java V2.3.0

Identity- & Access-Management Application-Security

N B — £
User 1 Role 1 Role 1 *- Permission 1

—r@ ——————————— e @] Group Al —h%
e L Group 1 ﬁ— Permission 2

___@ ___________ _*@] Group A2

Group2 Group 2 Permission 3

g -
Group 3 Group 3 —"&_ Permission 4

o | 2
Group 4 Group 4 _"'“#_ Permission 5
i S

Group 5 Group 5 Permission &
. AN J
A hd
ﬁ Directory-Server Eg access-control-schema.xmil

Figure 4.1. OASP4J Security Model
The diagram shows the model of oasp4j-security that separates two different aspects:

e The Indentity- and Access-Management is provided by according products and typically already
available in the enterprise landscape (e.g. an active directory). It provides a hierarchy of primary
access control objects (roles and groups) of a user. An administrator can grant and revoke
permissions (indirectly) via this way.

» The application security is using oasp4j-security defines a hierarchy of secondary access control
objects (groups and permissions) in the file access-control-schema.xml (see example from sample
app). This hierarchy defines the application internal access control schema that should be an
implementation secret of the application. Only the top-level access control objects are public and
define the interface to map from the primary to secondary access control objects. This mapping is
simply done by using the same names for access control objects to match.

Access Control Schema

The oasp4j - securi ty module provides a simple and efficient way to define permissions and roles.
The file access-control - schema. xm is used to define the mapping from groups to permissions.
The general terms discussed above can be mapped to the implementation as follows:

Table 4.5. General security terms related to oasp4j access control schema

Term oaspéj- Comment
security
implementation

Permission AccessContr ol Perm ssi on

Group AccessCont r Wikmuapnsidering different levels of groups of different meanings,
declare t ype attribute, e.g. as "group".

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 73

https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-core/src/main/resources/config/app/security/access-control-schema.xml
https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-core/src/main/resources/config/app/security/access-control-schema.xml

Open Application Standard Platform for Java V2.3.0

Term oaspéj- Comment
security
implementation

Role AccessCont r Wid bype="rol e".
Access AccessCont r &uper type that represents a tree of AccessCont r ol G oups
Control and AccessCont r ol Per m ssi ons. If a principal "has" a

AccessCont rol he also "has" all AccessCont r ol s with according
permissions in the spanned sub-tree.

Example access-control-schema.xml.

<?xm version="1.0" encodi ng="UTF-8"?>
<access-control - schena>
<group id="ReadMasterData" type="group">
<per m ssi ons>
<perm ssion id="CfferManagenent _GetOffer"/>
<perm ssion id="Off er Managenent _Get Product "/ >
<perm ssi on id="Tabl eManagenent _Get Tabl e"/ >
<perm ssion id="Staff Managenent _Cet St af f Menber "/ >
</ perm ssi ons>
</ group>

<group id="Waiter" type="role">
<i nherits>
<gr oup- r ef >Bar keeper </ gr oup- r ef >
</inherits>
<per m ssi ons>
<perm ssi on i d="Tabl eManagenent _ChangeTabl e"/ >
</ per m ssi ons>
</ gr oup>

</ access-control - schema>

This example access-control - schema. xm declares

e a group named ReadMasterData, which grants four different permissions, e.g.,
O f er Managenent _Get Of f er

* agroup named Wi t er, which
« also grants all permissions from the group Bar keeper
« in addition grants the permission Tabl eManagenent _ChangeTabl e
* is marked to be a r ol e for further application needs.

The oasp4j-security module automatically validates the schema configuration and will throw an
exception if invalid.

Unfortunately, Spring Security does not provide differentiated interfaces for authentication
and authorization. Thus we have to provide an AuthenticationProvider, which
is provided from Spring Security as an interface for authentication and authorization
simultaneously. To integrate the oasp4j-security provided access control schema,
you can simply inherit your own implementation from the oasp4j-security provided
abstract class Abstract AccessControl BasedAut henti cati onProvider and register
your ApplicationAuthenticationProvider as an Authenticati onManager. Doing
so, Yyou also have to declare the two Beans AccessControl Provider and

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 74

Open Application Standard Platform for Java V2.3.0

AccessControl SchenaProvi der as listed below, which are precondition for the
Abst ract AccessCont r ol BasedAut henti cati onProvi der.

Example integration of oasp4j-security access control schema.

<bean id="Authenticati onManager" class="org.springframework. security.authentication.Provi der Manager" >
<constructor-arg>

<list>
<ref bean="ApplicationAuthenticationProvider"/>
</list>
</ constructor-ar g>
</ bean>

<bean i d="AccessControl Provi der" class="i0.o0asp. nodul e. security.common.inpl.accesscontrol.AccessControl Providerlnpl"/

>

<bean i d="AccessControl SchemaProvi der" class="io0.o0asp. nodul e. security.comon.inpl.accesscontrol.AccessControl SchemaProvi der
>

Configuration on URL level

The authorization (in terms of Spring security "access management") can be enabled seperately for
different url patterns, the request will be matched against. The order of these url patterns is essential
as the first matching pattern will declare the access restriction for the incoming request (see access
attribute). Here an example:

Extensive example of authorization on URL level.

<bean id="FilterSecuritylnterceptor" class="org.springfranmework.security.web.access.intercept.FilterSecuritylnterceptor">
<property name="aut henti cati onManager" ref="Authenticati onManager"/>
<property name="accessDeci si onManager" ref="FilterAccessDeci si onManager"/ >
<property name="securityMetadataSource">
<security:filter-security-netadata-source use-expressions="true">
<security:intercept-url pattern="/" access="i sAnonynmous()"/>
<security:intercept-url pattern="/index.jsp" access="i sAnonymous()"/>
<security:intercept-url pattern="/security/login*" access="i sAnonynmous()"/>
<security:intercept-url pattern="/j_spring_security_|login*" access="isAnonynous()"/>
<security:intercept-url pattern="/j_spring_security_| ogout*" access="isAnonymous()"/>
<security:intercept-url pattern="/services/rest/security/currentuser/" access="i sAnonynous() or
i sAut henticated()"/>
<security:intercept-url pattern="/**" access="isAuthenticated()"/>
</security:filter-security-netadata-source>
</ property>
</ bean>

<bean id="FilterAccessDeci si onManager" cl ass="org. spri ngfranmework. security.access. vote. Unani nousBased" >
<constructor-arg>

<list>
<bean cl ass="org. springfranmework. security.web. access. expressi on. WebExpr essi onVoter"/ >
</list>
</ constructor-arg>
</ bean>

Configuration on Java Method level

As state of the art oasp4j will focus on role-based authorization to cope with authorization for
executing use case of an application. We will use the JSR250 annotations, mainly @Rol esAl | owed,
for authorizing method calls against the permissions defined in the annotation body. This has to be done
for each use-case method in logic layer. Here is an example:

public class UcFi ndTabl el npl extends Abstract Tabl eUc i npl enents UcFi ndTabl e {

@Rol esAl | owed(Per m ssi onConst ant s. FI ND_TABLE)
public Tabl eEto findTabl e(Long id) {

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 75

Open Application Standard Platform for Java V2.3.0

return get BeanMapper (). map(get Tabl eDao().fi ndOne(id), Tabl eEto.class);

}
}

Now this method can only be called if a user is logged-in that has the permission FI ND_TABLE.
Check Data-based Permissions

Currently, we have no best practices and reference implementations to apply permission based access
on an application’s data. Nevertheless, this is a very important topic due to the high standards of data
privacy & protection especially in germany. We will further investigate this topic and we will adress it in
one of the next releases. For further tracking have a look at issue #125.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 76

https://github.com/oasp/oasp4j/issues/125

Open Application Standard Platform for Java V2.3.0

4.6 Validation

Validation is about checking syntax and semantics of input data. Invalid data is rejected by the
application. Therefore validation is required in multiple places of an application. E.g. the GUI will do
validation for usability reasons to assist the user, early feedback and to prevent unnecessary server
requests. On the server-side validation has to be done for consistency and security.

In general we distinguish these forms of validation:

« stateless validation will produce the same result for given input at any time (for the same code/
release).

« stateful validation is dependent on other states and can consider the same input data as valid in once
case and as invalid in another.

4.6.1 Stateless Validation

For regular, stateless validation we use the JSR303 standard that is also called bean validation (BV).
Details can be found in the specification. As implementation we recommend hibernate-validator.

4.6.1.1 Example

A description of how to enable BV can be found in the relevant Spring documentation. For a quick
summary follow these steps:

» Make sure that hibernate-validator is located in the classpath by adding a dependency to the pom.xml.

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
</ dependency>

» Define Spring beans:

<bean id="validator" class="org.springframework.validation.beanvali dati on.Local Val i dat or Fact or yBean"/ >
<bean cl ass="org. spri ngframework. val i dati on. beanval i dati on. Met hodVal i dati onPost Processor"/>

« Add the @Validated annotation to the implementation (spring bean) to be validated. For methods to
validate go to their declaration and add constraint annotations to the method parameters.

* @Valid annotation to the arguments to validate (if that class itself is annotated with constraints to
check).

¢ @NotNull for required arguments.

» Other constraints (e.g. @Size) for generic arguments (e.g. of type String or Integer). However,
consider to create custom datatypes and avoid adding too much validation logic (especially
redundant in multiple places).

OffermanagementRestServicelmpl.java.

@val i dat ed
public class O f ermanagenent Rest Servi cel npl inplenents RestService {

public void createCffer(@alid OferEto offer) {

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 77

http://beanvalidation.org/1.1/spec/
http://hibernate.org/validator/
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/htmlsingle/#validation-beanvalidation

Open Application Standard Platform for Java V2.3.0

 Finally add appropriate validation constraint annotations to the fields of the ETO class.

OfferEto.java.

@\ot Negat i veMoney
private Money currentPrice;

A list with all bean validation constraint annotations available for hibernate-validator can be found here.
In addition it is possible to configure custom constraints. Therefor it is neccessary to implement a
annotation and a corresponding validator. A description can also be found in the Spring documentation
or with more details in the hibernate documentation.

4.6.1.2 GUI-Integration
TODO
4.6.1.3 Cross-Field Validation

BV has poor support for this. Best practice is to create and use beans for ranges, etc. that solve this.
A bean for a range could look like so:

public class Range<V ext ends Conpar abl e<V>> {

private V mn;
private V nmax;

public Range(V mn, V max) {

super () ;

if ((mn!=null) & (max !'=null)) {
int delta = mn.conpareTo(max);
if (delta > 0) {

throw new Val ueQut & RangeException(null, mn, mn, nax);
}
}
this.mn = mn;
this. max = nmax;

}

public V getMn() ...
public V getMax() ...

4.6.2 Stateful Validation

For complex and stateful business validations we do not use BV (possible with groups and context, etc.)
but follow KISS and just implement this on the server in a straight forward manner. An example is the
deletion of a table in the example application. Here the state of the table must be checked first:

UcManageTablelmpl.java.

publ i c bool ean del et eTabl e(Long tabl eld) {

Tabl eEntity table = get Tabl eDao().find(tableld);
if (!table.getState().isFree()) {
throw new ||| egal EntityStateException(table, table.getState());
}
get Tabl eDao() . del ete(tabl e);
return true;

Implementing this small check with BV would be a lot more effort.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 78

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#table-spec-constraints
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/htmlsingle/#validation-beanvalidation-spring-constraints
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html/validator-customconstraints.html

Open Application Standard Platform for Java V2.3.0

4.7 Auditing

For database auditing we use hibernate envers. If you want to use auditing ensure you have the following
dependency in your pom.xmil:

<dependency>
<groupl d>i 0. oasp. j ava. nmodul es</ gr oupl d>
<artifactld>oasp4j-jpa-envers</artifactld>
</ dependency>

Make sure that entity manager (configured in beans-jpa.xml) also scans the package from the oasp4j-
jpal-envers] module in order to work properly.

<property name="packagesToScan">
<list>
<val ue>i 0. oasp. nodul e. j pa. dat aaccess. api </ val ue>

</list>

Now let your DAO implementation extend from AbstractRevisionedDao instead of AbstractDao and your
DAO interface extend from [Application]RevisionedDao instead of [Application]Dao.

The DAO now has a method getRevisionHistory(entity) available to get a list of revisions for a given
entity and a method load(id, revision) to load a specific revision of an entity with the given ID.

To enable auditing for a entity simply place the @Audited annotation to your entity and all entity classes
it extends from.

@ntity(nane = "Drink")
@\udi t ed
public class DrinkEntity extends ProductEntity inplenments Drink {

When auditing is enabled for an entity an additional database table is used to store all changes to
the entity table and a corresponding revision number. This table is called <ENTITY_NAME>_ AUD
per default. Another table called REVINFO is used to store all revisions. Make sure that these tables
are available. They can be generated by hibernate with the following property (only for development
environments).

dat abase. hi ber nat e. hbn2ddl . aut o=creat e

Another possibility is to put them in your database migration scripts like so.

CREATE CACHED TABLE PUBLI C. REVI NFO(
id BIG NT NOT NULL generated by default as identity (start with 1),
tinmestanp Bl G NT NOT NULL,
user VARCHAR(255)

)i

CREATE CACHED TABLE PUBLI C. <TABLE_NANME>_AUDX(
<ALL_TABLE_ATTRI BUTES>,
revtype TI NYINT,
rev BI G NT NOT NULL

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 79

http://envers.jboss.org/

Open Application Standard Platform for Java V2.3.0

4.8 Aspect Oriented Programming (AOP)

AOP is a powerful feature for cross-cutting concerns. However, if used extensive and for the wrong
things an application can get unmaintainable. Therefore we give you the best practices where and how
to use AOP properly.

4.8.1 AOP Key Principles

We follow these principles:

» We use spring AOP based on dynamic proxies (and fallback to cglib).

* We avoid AspectJ and other mighty and complex AOP frameworks whenever possible

» We only use AOP where we consider it as necessary (see below).
4.8.2 AOP Usage

We recommend to use AOP with care but we consider it established for the following cross cutting
concerns:

* Transaction-Handling

Authorization

Validation

» Trace-Logging (for testing and debugging)

Exception facades for services but only if no other solution is possible (use alternatives such as JAX-
RS provider instead).

4.8.3 AOP Debugging

When using AOP with dynamic proxies the debugging of your code can get nasty. As you can see by
the red boxes in the call stack in the debugger there is a lot of magic happening while you often just
want to step directly into the implementation skipping all the AOP clutter. When using Eclipse this can
easily be archived by enabling step filters. Therefore you have to enable the feature in the Eclipse tool
bar (highlighted in read).

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 80

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://docs.spring.io/spring/docs/2.5.4/reference/aop.html

Open Application Standard Platform for Java V2.3.0

mild Silis|mn ®E M e R EE’(-?vi?ji;-‘ =
(=2 Projects | [Project Explorer | [Package Explorer | 4% Debug i3 ¢ 7=
& Daemon Thread [http-nio-8081-exec-6] (Running)
a f# Daemon Thread [http-nio-8081-exec-7] (Suspended (breakpoint at line 42 in UcFindOrderImpl))

&= owns: PhaselnterceptorChain (id=117)

&= owns: NicChannel (id=118)

= UcFindOrderdmpl.findOrder(long] line: 42
MNativeMethodAccessordmpl.invoked(Method, Object, Object[]] line: not available [native method] N
MativeMethodAccessordmpl.invoke{Object, Object(]) line: 57
DelegatingMethodAccessorlmpl.invoke(Object, Object[]) line: 43
Method.invoke(Object, Object...) line: 606
Aopltils.invokeloinpointUsingReflection(Object, Method, Object(]) line: 302
ReflectiveMethodlnvecation.invokeloinpeoint() line: 130
ReflectiveMethodlnvocation.proceed() line: 157
MethodSecuritylnterceptor.invoke(MethodInvocation) line: 68
ReflectiveMethodlnvocation.proceed() line: 179
JdkDynamicAopProxy.invoke(Object, Method, Object(]) line: 208

1

= Salesmanagementlmpl.findOrder(long) line: 135
ativeMethodAccessorlmpl.invol ethod, Object, Object[]) line: not available [native method] .
MativeMethodAccessorlmpl.invoke(Object, Object(]) line: 57
DelegatingMethodAccessorlmpl.invoke(Object, Object[]) line: 43
Method.invoke(Object, Object...) line: 606
Aopltils.invokeloinpointUsingReflection(Object, Method, Object(]) line: 302
ReflectiveMethodlnvecation.invokeloinpeoint() line: 130
ReflectiveMethodlnvocation.proceed() line: 157
TransactionlnterceptorSl.proceedWithInvocation() line: 99
Transactionlnterceptor{TransactionAspectSupport).invokeWithinTransaction(Method, Class<?=, InvocationCallback) line: 281
Transactionlnterceptor.invoke{MethodInvocation) line: 96
ReflectiveMethodlnvocation.proceed() line: 179
JdkDynamicAopProxy.invoke(Object, Method, Object(]) line: 208
SProxyl40.findOrder{long) line: not available v
SalesmanagementRestServicelmpl.findOrder(long) line: 40
MNativeMethodAccessordmpl.invoked(Method, Object, Object[]] line: not available [native method]
MativeMethodAccessorlmpl.invoke(Object, Object(]) line: 57
DelegatingMethodAccessorlmpl.invoke(Object, Object[]) line: 43
Method.invoke(Object, Object...) line: 606
JAXRSInvoker{Abstractinvoker).performInvocation(Exchange, Object, Method, Object(]) line: 180
JAXRSInvoker{Abstractinvoker).invoke(Exchange, Object, Method, List<Object>] line: 96
JAXRSInvoker.invoke(Exchange, Object, Object) line: 189
JAXRSInvoker.invoke(Exchange, Object] line: 99
ServicelnvokerlnterceptorSl.run() line: 59

Servicelnvokerlnterceptor.handleMessage{Message] line: 96

PhaselnterceptorChain.dolntercept(Message) line: 308

ChainlnitiationObserver.onMessage(Message] line: 121
ServletDestination(AbstractHT TP Destination).invoke(ServletConfig, ServietContext, HttpServletRequest, HitpServietResponse) line: 254
ServietController.invokeDestination(HttpServietRequest, HttpServletResponse, AbstractHTTPDestination) line: 234
ServietController.invoke(HttpServletRequest, HttpServietResponse, boolean) line: 208
ServietController.invoke(HttpServietRequest, HttpServietResponse) line: 160
CXFServlet{CXFMNonSpringServiet).invoke{HttpServletRequest, HttpServletResponse) line: 180
CXFServlet{AbstractHTTPServlet).handleRequest(HttpServietRequest, HttpServietResponse) line: 298
CXFServlet{AbstractHTTPServlet). doGet(HttpServietRequest, HttpServietResponse) line: 222
CXFServlet{HttpServlet).service(HttpServietRequest, HttpServietResponse) line: 687
CXFServlet{AbstractHTTPServlet).service(ServletRequest, ServletResponse] line: 273

AnnliratianEikarhain intarnalDabibarCandatRannact CandetRacnancal line 707

10000 00 TR0 00000 00D 00 TR0 00 OO0 0% 00000 00 e

In order to properly make this work you need to ensure that the step filters are properly configured:

m

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

81

Open Application Standard Platform for Java V2.3.0

i B
{8 Preferences o] 50
type filter text] Step Filtering D v v

Heap Walki -
ea.p ating Step filters are applied when the 'Use Step Filters' toggle is activated.
Logical Structure]
Primitive Display Use Step Filters
Step Filtering Defined step filters:

> Editor [] £ com.ibm.* Add Filter...
FindBugs [[] #8 com.sun*

» Installed JREs i java. Add Class...
Wit = £ javalang.* Add Packages...
Properties Files Edite B java.security.*

> lava EE 4 java.util.* Remove
» Java Persistence il [88 javax*
» JavaScript J
] B jrockit.* Select All
> Maven 8 he.of i lient.*
. Mylyn S org.apac*e. Jaxrs.client. Deselect Al
. ObjectAid org.omg.
. Oomph E}org.spr?ngframmork."
. Plug-in Development H org.springframework.aop.*
Quick Search B org.springframework.aop.aspectj.*
- Remote Systems B sun.
> Run/Debug [8 sunw.*
» Server = Gjava.lang.CIassLoader
> Spring
» StartExplorer
> Team
» Teamscale Filter synthetic methods (requires VM support)
» Terminal Filter static initializers
Validation [7] Filter constructors

» Web

Filter simple gett
> Web Services g TIer simple getters

Filter simple setters
> XML P
- YEdit Preferences i Step through filters

PN —T— . [F{Etore Defaulis] [Apply]
® [OK] [Cancel]
b

Ensure you have at least the following step-filters configured and active:

ch. qos. | ogback. *

i 0. oasp. nodul e. security.*
java.lang.reflect.*
java.security.*

j avax. per si stence. *

or g. apache. commons. | oggi ng. *
org. apache. cxf.jaxrs.client.*
org. apache. tontat . *

org. h2. *

or g. spri ngf ramewor k. *

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 82

Open Application Standard Platform for Java V2.3.0

4.9 Exception Handling

4.9.1 Exception Principles
For exceptions we follow these principles:

» We only use exceptions for exceptional situations and not for programming control flows, etc. Creating
an exception in Java is expensive and hence you should not do it just for testing if something is
present, valid or permitted. In the latter case design your API to return this as a regular result.

» We use unchecked exceptions (RuntimeException)
» We distinguish internal exceptions and user exceptions:

* Internal exceptions have technical reasons. For unexpected and exotic situations it is sufficient to
throw existing exceptions such as lllegalStateException. For common scenarios a own exception
class is reasonable.

« User exceptions contain a message explaining the problem for end users. Therefore we always
define our own exception classes with a clear, brief but detailed message.

» Our own exceptions derive from an exception base class supporting
e unique ID per instance

* Error code per class

* message templating (see 118N)

« distinguish between user exceptions and internal exceptions

All this is offered by mmm-util-core that we propose as solution.

4.9.2 Exception Example

Here is an exception class from our sample application:

public class Illegal EntityStateException extends Restaurant Busi nessException {
private static final |ong serialVersionUD = 1L;
public Illegal EntityStateException(RestaurantEntity entity, Cbject state) {

super (creat eBundl e(Nl sBundl eRest aur ant Root . cl ass).errorlllegal EntityState(entity, state));

}
public Illegal EntityStateException(RestaurantEntity entity, Cbject currentState, Object newState) {

super (creat eBundl e(Nl sBundl eRest aur ant Root . cl ass) . errorl || egal EntityStateChange(entity,
currentState, newState));
}
}

The message templates are defined in the interface NIsBundleRestaurantRoot as following:

public interface N sBundl eRestaurant Root extends N sBundle {

@N sBundl eMessage("The entity {entity} is in state {state}!")
N sMessage errorlllegal EntityState(@aned("entity") Object entity, @aned("state") Object state);

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 83

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#getUuid%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#getCode%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsThrowable.html#getNlsMessage%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#isForUser%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/package-summary.html#documentation

Open Application Standard Platform for Java V2.3.0

@N sBundl eMessage("The entity {entity} in state {currentState} can not be changed to state
{newState}!")

N sMessage errorlllegal EntityStateChange(@aned("entity") Object entity, @laned("currentState") Object
current State, @lanmed("newState”) Cbject newState);

}

4.9.3 Handling Exceptions
For catching and handling exceptions we follow these rules:
» We do not catch exceptions just to wrap or to re-throw them.

« If we catch an exception and throw a new one, we always have to provide the original exception as
cause to the constructor of the new exception.

e At the entry points of the application (e.g. a service operation) we have to catch and
handle all throwables. This is done via the exception-facade-pattern via an explicit facade
or aspect. The OASP4J already provides ready-to-use implementations for this such as
RestServiceExceptionFacade. The exception facade has to...

« log all errors (user errors on info and technical errors on error level)

e convert the error to a result appropriable for the client and secure for Sensitive Data Exposure.
Especially for security exceptions only a generic security error code or message may be revealed
but the details shall only be logged but not be exposed to the client. All internal exceptions are
converted to a generic error with a message like:

An unexpected technical error has occurred. We apologize any inconvenience.
Please try again later.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 84

http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html#getCause%28%29
https://github.com/oasp/oasp4j/blob/develop/oasp4j-rest/src/main/java/io/oasp/module/rest/service/impl/RestServiceExceptionFacade.java
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

Open Application Standard Platform for Java V2.3.0

4.10 Internationalization

Internationalization (118N) is about writing code independent from locale-specific informations. For 118N
of text messages we are suggesting mmm native-language-support.

In OASP we have developed a solution to manage text internationalization. OASP solution comes into
two aspects:

» Bind locale information to the user.

» Get the messages in the current user locale.
4.10.1 Binding locale information to the user

We have defined two different points to bind locale information to user, depending on user is
authenticated or not.

» User not authenticated: Oasp intercepts unsecured request and extract locale from it. At first, we try
to extract a | anguage parameter from the request and if it is not possible, we extract locale from
Accept-language’ header.

» User authenticated. During login process, applications developers are responsible to fill | anguage
parameter in the UserProfile class. This | anguage parameter could be obtain from DB, LDAP,
request, etc. In OASP sample we get the locale information from database.

This image shows the entire process:

Unauthenticated user

Some request. Send parameter "language=en_EN"

[
) Save language
Web Client Server information on
Some request. Header "accept-language=en_EN" user session.

Authenticated user
1. Login request. Iﬁmﬁ|

. N >

Server

Web Client
es_ES

2. currentuser request.
Save language

: :>‘
information on

< 3. Send user profile information S UserPraofile

4.10.2 Getting internationalizated messages

OASP has a bean that manage i18n message resolution, the Appl i cat i onLocal eResol ver. This
bean is responsible to get the current user and extract locale information from it and read the correct
properties file to get the message.

The i18n properties file must be called Applicati onMessages | a_CO. properties where
la=language and CO=country. This is an example of a i18n properties file for English language to
translate OASP sample user roles:

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 85

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/nls/api/package-summary.html#documentation

Open Application Standard Platform for Java V2.3.0

ApplicationMessages_en_US.properties

wai t er =Wi t er

chi ef =Chi ef
cook=Cook

bar keeper =Bar keeper

You should define an ApplicationMessages_la_CO.properties file for every language that your
application needs.

Appl i cati onLocal eResol ver beanisinjected in Abst r act Conponent Facade class so you have
available this bean in logic layer so you only need to put this code to get an internationalizated message:

String nmsg = get ApplicationLocal eResol ver (). get Message(" nmynessage");

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 86

Open Application Standard Platform for Java V2.3.0

4.11 XML

XML (Extensible Markup Language) is a W3C standard format for structured information. It has a large
eco-system of additional standards and tools.

In Java there are many different APIs and frameworks for accessing, producing and processing XML.
For the OASP we recommend to use JAXB for mapping Java objects to XML and vice-versa. Further
there is the popular DOM API for reading and writing smaller XML documents directly. When processing
large XML documents StAX is the right choice.

4.11.1 JAXB
We use JAXB to serialize Java objects to XML or vice-versa.
4.11.1.1 JAXB and Inheritance

TODO @XmlSeeAlso http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-
polymorphic-classes

4.11.1.2 JAXB Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to define a custom mapping. If you create dedicated objects dedicated for the XML mapping you can
easily avoid such situations. When this is not suitable follow these instructions to define the mapping:
TODO

https://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 87

http://en.wikipedia.org/wiki/XML
http://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
http://en.wikipedia.org/wiki/StAX
http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-polymorphic-classes
http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-polymorphic-classes
https://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html

Open Application Standard Platform for Java V2.3.0

4.12 JSON

JSON (JavaScript Object Notation) is a popular format to represent and exchange data especially for
modern web-clients. For mapping Java objects to JSON and vice-versa there is no official standard API.
We use the established and powerful open-source solution Jackson. Due to problems with the wiki of
fasterxml you should try this alternative link: Jackson/AltLink.

4.12.1 Configure JSON Mapping

In order to avoid polluting business objects with proprietary Jackson annotations (e.g. @sonTypel nf o,
@sonSubTypes, @sonProperty) we propose to create a separate configuration class. Every
OASP application (sample or any app created from our app-template) therefore has a class
called Appl i cat i onCbj ect Mapper Fact or y that extends ObjectMapperFactory from the oasp4j-rest
module. It looks like this:

@Naned(" Appl i cati onObj ect Mapper Fact ory")
public class ApplicationCbject Mapper Factory extends Object Mapper Factory {

publ i ¢ Restaurant Obj ect Mapper Factory() {
super () ;
/1 JSON configuration code goes here

}

}

4.12.2 JSON and Inheritance

If you are using inheritance for your objects mapped to JSON then polymorphism can not be supported
out-of-the box. So in general avoid polymorphic objects in JSON mapping. However, this is not always
possible. Have a look at the following example from our sample application:

<<]ava Class»>=

(3 ProductEto
<<]ava Clazs== << |ava Class»>>= <<]ava Class»>=

(= DrinkEto (= MealEto (= SideDishEto

Figure 4.2. Transfer-Objects using Inheritance

Now assume you have a REST service operation as Java method that takes a ProductEto as argument.
As this is an abstract class the server needs to know the actual sub-class to instantiate. We typically do
not want to specify the classname in the JSON as this should be an implementation detail and not part
of the public JSON format (e.g. in case of a service interface). Therefore we use a symbolic name for
each polymorphic subtype that is provided as virtual attribute @type within the JSON data of the object:

{ "@Qype": "Drink", ... }

Therefore you add configuration code to the constructor of ApplicationObjectMapperFactory. Here you
can see an example from the sample application:

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 88

http://en.wikipedia.org/wiki/JSON
http://wiki.fasterxml.com/JacksonHome
https://github.com/FasterXML/jackson#jackson-project-home-github

Open Application Standard Platform for Java V2.3.0

set BaseCl asses(Product Et 0. cl ass) ;
addSubt ypes(new NamedType(Meal Eto. cl ass, "Meal "), new NanedType(DrinkEto.class, "Drink"),
new NanedType(Si deDi shEto. cl ass, "SideDi sh"));

We use set BaseC asses to register all top-level classes of polymorphic objects. Further we declare
all concrete polymorphic sub-classes together with their symbolic hame for the JSON format via
addSubt ypes.

4.12.3 JSON Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to define a custom mapping. If you create objects dedicated for the JISON mapping you can easily avoid
such situations. When this is not suitable follow these instructions to define the mapping:

1. As an example, the use of JSR354 (j avax. noney) is appreciated in order to process monetary
amounts properly. However, without custom mapping, the default mapping of Jackson will produce
the following JSON for a Monet ar yAnount :

"currency": {"defaultFractionDigits":2, "numericCode":978, "currencyCode":"EUR'},
"monetaryContext": {...},

"nunber": 6. 99,

"factory": {...}

As clearly can be seen, the JSON contains too much information and reveals implementation secrets
that do not belong here. Instead the JSON output expected and desired would be:

"currency":"EUR', "anount":"6. 99"

Even worse, when we send the JSON data to the server, Jackson will see that Monet ar yAnount
is an interface and does not know how to instantiate it so the request will fail. Therefore we need a
customized Serializer and Deserializer.

2. We implement Monet ar yAmount JsonSer i al i zer to define how a Monet ar yAnount is serialized
to JSON:

public final class MnetaryAmuntJsonSerializer extends JsonSerializer<MnetaryAmunt> {

public static final String NUVMBER = "anount";
public static final String CURRENCY = "currency";

public void serialize(MnetaryAnount val ue, JsonCenerator jgen, SerializerProvider provider) throws
- {
if (value !'= null) {
jgen.writeStartObject();
jgen.writeFi el dName(Monet ar yAnount JsonSeri al i zer . CURRENCY) ;
jgen.witeString(val ue.getCurrency().getCurrencyCode());
jgen.witeFi el dNane(Monet ar yAnount JsonSeri al i zer . NUMBER) ;
jgen.writeString(val ue. get Nunber().toString());
jgen.writeEndObject();

For composite datatypes it is important to wrap the info as an object (witeStart Qbject()
and writeEndObject()). MonetaryAnount provides the information we need by the
get Currency() and get Nunber () . So that we can easily write them into the JSON data.

3. Next, we implement Monet ar yAnount JsonDeseri al i zer to define how a Monet ar yAnount is
deserialized back as Java object from JSON:

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 89

http://jackson.codehaus.org/1.7.3/javadoc/org/codehaus/jackson/map/JsonSerializer.html
http://jackson.codehaus.org/1.2.1/javadoc/org/codehaus/jackson/map/JsonDeserializer.html

Open Application Standard Platform for Java V2.3.0

public final class MnetaryAmuntJsonDeserializer extends AbstractJsonDeseri alizer<Monet aryAmount > {
protected MnetaryAnount deseriali zeNode(JsonNode node) {
Bi gDeci mal nunber = get Requi r edVal ue(node, Mbnet ar yAnount JsonSeri al i zer . NUMBER,
Bi gDeci mal . cl ass) ;
String currencyCode = get Requi redVal ue(node, Monet aryAnountJsonSeri al i zer. CURRENCY,
String.class);
Monet ar yAnount nonet ar yAnount =
Monet ar yAmount s. get Amount Fact ory() . set Nunber (nunber) . set Currency(currencyCode).create();
return nonet ar yAnount ;
}
}

For composite datatypes we extend from Abst r act JsonDeseri al i zer as this makes our task
easier. So we already get a JsonNode with the parsed payload of our datatype. Based on this
API it is easy to retrieve individual fields from the payload without taking care of their order,
etc. Abst ract JsonDeseri al i zer also provides methods such as get Requi r edVal ue to read
required fields and get them converted to the desired basis datatype. So we can easily read the
amount and currency and construct an instance of Monet ar yAnount via the official factory API.

4. Finally we need to register our custom (de)serializers with the following configuration code in the
constructor of ApplicationObjectMapperFactory:+

Si npl eModul e nodul e = get Ext ensi onModul e() ;
nmodul e. addDeseri al i zer (Monet ar yAnount . cl ass, new Monet ar yAnmount JsonDeseri al i zer());
nodul e. addSeri al i zer (Monet ar yAnmount . ¢l ass, new Monet ar yAnount JsonSeri al i zer());

Now we can read and write Monet ar yAnount from and to JSON as expected.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 20

https://github.com/oasp/oasp4j/blob/develop/oasp4j-rest/src/main/java/org/oasp/module/rest/service/impl/json/AbstractJsonDeserializer.java

Open Application Standard Platform for Java V2.3.0

4.13 REST

REST (REpresentational State Transfer) is an inter-operable protocol for services that is more
lightweight than SOAP. However, it is no real standard and can cause confusion. Therefore we define
best practices here to guide you.

4.13.1 URLs

For operations in REST we distinguish the following types of URLS:

» A collection URL is build from the rest service URL by appending the name of a collection. This is
typically the name of an entity. Such URI identifies the entire collection of all elements of this type.
Example: 'https://mydomain.com/myapp/services/rest/mycomponent/vl/myentity’

* An element URL is build from a collection URL by appending an element ID. It identifies a
single element (entity) within the collection. Example: 'https://mydomain.com/myapp/services/rest/
mycomponent/vl/myentity/42'

» A search URL is build from a collection URL by appending the segment sear ch. The search criteria
is send as POST. Example: 'https://mydomain.com/myapp/services/rest/mycomponent/vl/myentity/
search’

This fits perfect for CRUD operations. For business operations (processing, calculation, etc.) we simply
create a collection URL with the name of the business operation instead of the entity name (use a clear
naming convention to avoid collisions). Then we can POST the input for the business operation and get
the result back.

If you want to provide an entity with a different structure (e.g. extended via CTO) do not
append further details to an element URL but create a separate collection URL as base. So
use 'https://mydomain.com/myapp/services/rest/mycomponent/vl/myentity-with-details/42' instead of
'https://mydomain.com/myapp/services/rest/mycomponent/vl/myentity/42/with-details'.

4.13.2 HTTP Methods

While REST was designed as a pragmatical approach it sometimes leads to "religious"” discussions e.g.
about using PUT instead of POST. In the end these discussions mainly waste time and energy but add
little to no value. Further there are complex paradigms on top of REST such as HATEOAS. These may
be useful if you provide public REST services consumed by the entire world. Otherwise the extra effort
may not be worth the added value. As the OASP has a string focus on usual business applications it
proposes a more "pragmatic” approach to REST services.

On the next table we compare the main differences between the "canonical® REST approach (or
RESTful) and the OASP proposal.

Table 4.6. Usage of HTTP methods
HTTP Method RESTful Meaning OASP
GET Read single element. Read a single element.

Search on an entity (with
parametrized url)

PUT Replace entity data. Not used

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 91

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/HATEOAS

Open Application Standard Platform for Java V2.3.0

HTTP Method RESTful Meaning OASP

Replace entire collection
(typically not supported)

POST Create a new element in the Create or update an element in
collection the collection.

Search on an entity
(parametrized post body)

Bulk deletion.
DELETE Delete an entity. Delete an entity.
Delete an entiry collection Delete an entiry collection
(typically not supported) (typically not supported)

Please consider these guidelines and rationales: * We use POST on the collection URL for both create
and update operations on an entity. This avoids pointless discussions in distinctions between PUT and
POST and what to do if a "creation” contains an ID or if an "update” is missing the ID property. * Hence,
we do NOT use PUT but always use POST for write operations. As we always have a technical ID for
each entity, we can simply distinguish create and update by the presence of the ID property.

4.13.3 HTTP Status Codes

Further we define how to use the HTTP status codes for REST services properly. In general the 4xx
codes correspond to an error on the client side and the 5xx codes to an error on the server side.

Table 4.7. Usage of HTTP status codes

HTTP Code Meaning Response Comment

200 OK requested result Result of successful
GET

204 No Content none Result of successful

POST, DELETE, or
PUT (void return)

400 Bad Request error details The HTTP request is
invalid (parse error,
validation failed)

401 Unauthorized none (security) Authentication failed
403 Forbidden none (security) Authorization failed
404 Not found none Either the service

URL is wrong or the
requested resource
does not exist

500 Server Error error code, UUID Internal server error
occurred (used for all
technical exceptions)

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 92

Open Application Standard Platform for Java V2.3.0

For more details about REST service design please consult the RESTful cookbook.

4.13.4 Metadata

OASP has support for the following metadata in REST service invocations:

Name Description

Correlation 1D A unique identifier to associate
different requests belonging to

the same session / action

Standardized format for a
service to communicate
validation errors to the client

Validation errors

Further information

Logging guide

Server-side validation is
documented in the Validation

guide.

The protocol to communicate
these validation errors to the
client is worked on at https://
github.com/oasp/oasp4j/

issues/218
Pagination Standardized format for a Server-side support for
service to offer paginated pagination is documented in the
access to a list of entities Data-Access Layer Guide.
4.13.5 JAX-RS

For implementing REST services we use the JAX-RS standard. As an implementation we recommend
CXF. For JSON bindings we use Jackson while XML binding works out-of-the-box with JAXB. To
implement a service you simply write a regular class and use JAX-RS annotations to annotate methods
that shall be exposed as REST operations. Here is a simple example:

@pat h("/t abl emanagenent ")
@Naned(" Tabl eManagenent Rest Ser vi ce")
public class Tabl eManagenent Rest Servi cel npl i npl enents Rest Service {
I
@r oduces(Medi aType. APPLI CATI ON_JSON)
@ET
@ath("/table/{id}/")
@Rol esAl | owed(Per m ssi onConst ant . GET_TABLES)
publ i c Tabl eEt o get Tabl e(@at hParan("id") String id) throws RestServiceException {

Long i dAsLong;
if (id==null)
t hrow new BadRequest Excepti on("m ssing id");
try {
i dAsLong = Long. parseLong(id);
} catch (Nunber For mat Exception e) {
throw new Rest Servi ceException("id is not a nunber");
} catch (Not FoundException e) {
t hrow new Rest Servi ceException("table not found");
}
return this.tabl eManagenent. get Tabl e(i dAsLong);

Here we can see a REST service for the business component t abl emanagenent . The method
get Tabl e can be accessed via HTTP GET (see @=ET) under the URL path t abl emanagenent /

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 93

http://restcookbook.com/
https://github.com/oasp/oasp4j/issues/218
https://github.com/oasp/oasp4j/issues/218
https://github.com/oasp/oasp4j/issues/218
https://jax-rs-spec.java.net/
http://cxf.apache.org/
http://wiki.fasterxml.com/JacksonHome
http://www.oracle.com/technetwork/articles/javase/index-140168.html

Open Application Standard Platform for Java V2.3.0

tabl e/ {i d} (see @pat h annotations) where {i d} is the ID of the requested table and will be
extracted from the URL and provided as parameter i d to the method get Tabl e. It will return its
result (Tabl eEt 0) as JSON (see @r oduces). As you can see it delegates to the logic component
t abl eManagenent that contains the actual business logic while the service itself only contains
mapping code and general input validation. Further you can see the @Rol esAl | owed for security. The
REST service implementation is a regular CDI bean that can use dependency injection.

Note

With JAX-RS it is important to make sure that each service method is annotated with the proper
HTTP method (@EET,@CST ,etc.) to avoid unnecessary debugging. So you should take care not
to forget to specify one of these annotations.

4.13.5.1 JAX-RS Configuration

Starting from CXF 3.0.0 it is possible to enable the auto-discovery of JAX-RS roots and providers thus
avoiding having to specify each service bean in the beans- servi ce. xni file.

When the jaxrs server is instantiated all the scanned root and provider beans (beans annotated with
javax.ws.rs. Path andjavax. ws. rs. ext. Provi der) are configured. The xml configuration still
allows us to specify the root path for all endpoints.

<j axrs:server id="CxfRestServices" address="/rest" />

4.13.6 REST Exception Handling

For exceptions a service needs to have an exception facade that catches all exceptions and handles
them by writing proper log messages and mapping them to a HTTP response with an according HTTP
status code. Therefore the OASP provides a generic solution via Rest Ser vi ceExcept i onFacade.
You need to follow the exception guide so that it works out of the box because the facade needs to be
able to distinguish between business and technical exceptions. You need to configure it in your beans-
servi ce. xnl as following:

<j axrs:server id="CxfRestServices" address="/rest">
<j axrs: provi der s>
<bean cl ass="i 0. oasp. nodul e. rest. servi ce.inpl.Rest Servi ceExcepti onFacade"/ >
<l-- ... -->
</j axrs: provi der s>
<l-- ... -->
</j axrs:server>

Now your service may throw exceptions but the facade with automatically handle them for you.
4.13.7 Recommendations for REST requests and responses

The OASP proposes, for simplicity, a deviation from the REST common pattern:

» Using POST for updates (instead of PUT)

 Using the payload for addressing resources on POST (instead of identifier on the URL)

» Using parametrized POST for searches

This use of REST will lead to simpler code both on client and on server. We discuss this use on the
next points.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 94

Open Application Standard Platform for Java V2.3.0

REST services are called via HTTP(S) URIs. We distinguish between collection and element URIs:

» A collection URI is build from the rest service URI by appending the name of a collection. This is
typically the name of an entity. Such URI identifies the entire collection of all elements of this type.
Example: https://mydomain.com/myapp/services/rest/mycomponent/myentity

» Anelement URlI s build from a collection URI by appending an element ID. Itidentifies a single element
(entity) within the collection. Example: https://mydomain.com/myapp/services/rest/mycomponent/

myentity/42

The following table specifies how to use the HTTP methods (verbs) for collection and element URIs
properly (see wikipedia). For general design considerations beyond this documentation see the API
Design eBook.

4.13.7.1 Unparameterized loading of a single resource
e HTTP Method: GET
* URL example:/ products/ 123

For loading of a single resource, embed the i denti fi er of the resource in the URL (for example /
product s/ 123).

The response contains the resource in JSON format, using a JSON object at the top-level, for example:

{
"nane": "Steak",
"color": "brown"

4.13.7.2 Unparameterized loading of a collection of resources
e HTTP Method: GET

* URL example:/ product s

For loading of a collection of resources, make sure that the size of the collection can never exceed a
reasonable maximum size. For parameterized loading (searching, pagination), see below.

The response contains the collection in JSON format, using a JSON object at the top-level, and the
actual collection underneath ar esul t key, for example:

{

"result": [

{

"nane": "Steak",
“color": "brown"

{
"name": "Broccoli",
"color": "green"

}

4.13.7.3 Saving aresource
 HTTP Method: POST

* URL example: / products

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 95

https://mydomain.com/myapp/services/rest/mycomponent/myentity
https://mydomain.com/myapp/services/rest/mycomponent/myentity/42
https://mydomain.com/myapp/services/rest/mycomponent/myentity/42
http://en.wikipedia.org/wiki/Representational_State_Transfer#Applied_to_web_services
https://pages.apigee.com/web-api-design-ebook.html
https://pages.apigee.com/web-api-design-ebook.html

Open Application Standard Platform for Java V2.3.0

The resource will be passed via JSON in the request body. If updating an existing resource, include the
resource’s i denti fi er inthe JSON and not in the URL, in order to avoid ambiguity.

If saving was successful, an empty HTTP 204 response is generated.

If saving was unsuccessful, refer below for the format to return errors to the client.
4.13.7.4 Parameterized loading of a resource

* HTTP Method: PCST

* URL example:/ product s/ search

In order to differentiate from an unparameterized load, a special subpath (for example sear ch) is
introduced. The parameters are passed via JSON in the request body. An example of a simple,
paginated search would be:

{
"status": "OPEN',

"pagi nation": {
"page": 2,
"size": 25

The response contains the requested page of the collection in JSON format, using a JSON object at the
top-level, the actual page underneath ar esul t key, and additional pagination information underneath
a pagi nati on key, for example:

{
"pagi nation": {
"page": 2,
"size": 25,
“total ": null
B
"result": [
{
"nane": "Steak",
"color": "brown"
B
{
"nane": "Broccoli",
"color": "green"
}
|
}

Compare the code needed on server side to accept this request:

@ath("/order")
@QosT
public List<OrderCo> findOders(OderSearchCriteriaTo criteria) {
return this.sal esManagenent. findOrderCtos(criteria);

}

With the equivalent code required if doing it the REST way by issuing a GET request:

@rat h("/order™)
@ET
public List<OrderCto> findOders(@ontext Urilnfo info) {

Request Par anet ers paranmeters = Request Paraneters. fromuery(info);
OrderSearchCriteriaTo criteria = new OrderSearchCriteriaTo();

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 96

Open Application Standard Platform for Java V2.3.0

criteria.setTabl el d(paraneters.get("tableld", Long.class, false));
criteria.setState(paranmeters.get("state", OderState.class, false));
return this.sal esManagenent. findOrderCtos(criteria);

}
Pagination details

The client can choose to request a count of the total size of the collection, for example to calculate
the total number of available pages. It does so, by specifying the pagi nati on. t ot al property with
a value of t r ue.

The service is free to honour this request. If it chooses to do so, it returns the total count as the
pagi nati on. t ot al property in the response.

4.13.7.5 Deletion of aresource
e HTTP Method: DELETE
e URL example:/ products/ 123

For deletion of a single resource, embed the i denti fi er of the resource in the URL (for example /
product s/ 123).

4.13.7.6 Error results

The general format for returning an error to the client is as follows:

{

"message": "A human-readabl e nessage describing the error",

"code": "A code identifying the concrete error”,

“uuid": "An identifier (generally the correlation id) to help identify corresponding requests in
| ogs"

}

If the error is caused by a failed validation of the entity, the above format is extended to also include
the list of individual validation errors:

"message": "A human-readabl e nessage describing the error",

"code": "A code identifying the concrete error"”,

"uuid': "An identifier (generally the correlation id) to help identify corresponding requests in
|l ogs",

"errors": {
"property failing validation": [
"First error nessage on this property",
"Second error nmessage on this property"

4.13.8 REST Media Types

The payload of a REST service can be in any format as REST by itself does not specify this.
The most established ones that the OASP recommends are XML and JSON. Follow these links for
further details and guidance how to use them properly. JAX- RS and CXF properly support these
formats (Medi aType. APPLI CATI ON_JSONand Medi aType. APPLI CATI ON_XM. can be specified for
@r oduces or @onsumes). Try to decide for a single format for all services if possible and NEVER
mix different formats in a service.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 97

Open Application Standard Platform for Java V2.3.0

In order to use JSON via Jackson with CXF you need to register the factory in your beans-
servi ce. xm and make CXF use it as following:

<j axrs:server id="CxfRestServices" address="/rest">
<j axrs: provi der s>
<bean cl ass="org. codehaus. j ackson.] axrs. JacksonJsonProvi der" >
<property name="napper">
<ref bean="Obj ect Mapper Factory"/>
</ property>
</ bean>
<l-- ... -->
</j axrs: provi ders>
<l-- ... -->
</ axrs:server>

<bean id="Cbj ect Mapper Factory" factory-bean="Restaurant Cbj ect Mapper Factory" factory-
net hod="cr eat el nst ance"/ >

4.13.9 REST Testing
For testing REST services in general consult the testing guide.
For manual testing REST services there are browser plugins:

» Firefox: httprequester (or poster)

* Chrome: postman (advanced-rest-client)

4.13.10 Security

Your services are the major entry point to your application. Hence security considerations are important
here.

4.13.10.1 CSRF

A common security threat is CSRF for REST services. Therefore all REST operations that are performing
modifications (PUT, POST, DELETE, etc. - all except GET) have to be secured against CSRF attacks.
In OASP4J we are using spring-security that already solves CSRF token generation and verification.
The integration is part of the application template as well as the sample-application.

For testing in development environment the CSRF protection can be disabled using the JVM option -
DCsr f Di sabl ed=t r ue when starting the application.

4.13.10.2 JSON top-level arrays

OWASP suggests to prevent returning JSON arrays at the top-level, to prevent attacks (see https://
www.owasp.org/index.php/OWASP_AJAX_Security Guidelines). However, no rationale is given at
OWASP. We digged deep and found anatomy-of-a-subtle-json-vulnerability. To sum it up the attack is
many years old and does not work in any recent or relevant browser. Hence it is fine to use arrays as
top-level resultin a JSON REST service (means you can return Li st <Foo> in a Java JAX-RS service).

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 98

https://addons.mozilla.org/en-US/firefox/addon/httprequester/
https://addons.mozilla.org/en-US/firefox/addon/poster/
http://www.getpostman.com/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/OWASP_AJAX_Security_Guidelines
https://www.owasp.org/index.php/OWASP_AJAX_Security_Guidelines
http://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx/

Open Application Standard Platform for Java V2.3.0

4.14 SOAP

SOAP is a common protocol for services that is rather complex and heavy. It allows to build inter-
operable and well specified services (see WSDL). SOAP is transport neutral what is not only an
advantage. We strongly recommend to use HTTPS transport and ignore additional complex standards
like WS-Security and use established HTTP-Standards such as RFC2617 (and RFC5280).

4.14.1 JAX-WS

For building web-services with Java we use the JAX-WS standard. There are two approaches:
 code first
 contract first

Here is an example in case you define a code-first service. We define a regular interface to define the
API of the service and annotate it with JAX-WS annotations:

@\ebSer vi ce
public interface Tabl emanagnment WebServi ce {

@\ébMet hod
@\¢bResul t (nane = "nessage")
Tabl eEt o get Tabl e(@¢bPar an(nane = "id") String id);

}

And here is a simple implementation of the service:

@Naned(" Tabl emanagenent WebSer vi ce™)
@\bSer vi ce(endpoi ntlnterface =

"i 0. oasp. gastronony. rest aur ant . t abl emanagenent . servi ce. api . ws. Tabl emanagnent \ebSer vi ce")
public class Tabl emanagenent WebSer vi cel npl i npl enent s Tabl emanagnent WebSer vi ce {

private Tabl emanagenent tabl eManagenent;

@verride
public Tabl eEto get Tabl e(String id) {

return this.tabl eManagenent.findTabl e(id);

}

Finally we have to register our service implementation in the spring configuration file beans-
service. xm:

<j axws: endpoi nt i d="t abl eManagenent" i npl ement or =" #Tabl enenagenent WebSer vi ce" address="/ws/
Tabl emanagenent/v1_0"/>

Thei npl ement or attribute references an existing bean with the ID Tabl emanagenent WebSer vi ce
that corresponds to the @Naned annotation of our implementation (see dependency injection guide).
The addr ess attribute defines the URL path of the service.

4.14.2 SOAP Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to write adapters for JAXB (see XML).

4.14.3 SOAP Testing

For testing SOAP services in general consult the testing guide.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 99

https://en.wikipedia.org/wiki/SOAP
https://jcp.org/en/jsr/detail?id=224

Open Application Standard Platform for Java V2.3.0

For testing SOAP services manually we strongly recommend SoapUl.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 100

http://www.soapui.org/

Open Application Standard Platform for Java V2.3.0

4.15 Testing

4.15.1 General best practices

For testing please follow our general best practices:

Tests should have a clear goal that should also be documented.

Tests have to be classified into different integration levels.

Tests should follow a clear naming convention.

Automated tests need to properly assert the result of the tested operation(s) in a reliable way. E.g.
avoid stuff like assertEquals(42, service.getAllEntities()) or even worse tests that have no assertion
at all (might still be reasonable to test that an entire configuration setup such as spring config of
application is intact).

Tests need to be independent of each other. Never write test-cases or tests (in Java @Test methods)
that depend on another test to be executed before.

Use assert frameworks like AssertJ to write good readable and maintainable tests that also provide
out-of-the-box good failure reports in case a test fails.

For easy understanding divide your test in three sections. Comment then with //given, //lwhen and //
then

Plan your tests and test data management properly before implementing.

Instead of having a too strong focus on test coverage better ensure you have covered your critical
core functionality properly and review the code including tests.

Test code shall NOT be seen as second class code. You shall consider design, architecture and code-
style also for your test code but do not over-engineer it.

Test automation is good but should be considered in relation to cost per use. Creating full coverage
via automated system tests can cause a massive amount of test-code that can turn out as a huge
maintenance hell. Always consider all aspects including product life-cycle, criticality of use-cases to
test, and variability of the aspect to test (e.g. Ul, test-data).

Use continuous integration and establish that the entire team wants to have clean builds and running
tests.

Do not use inheritance for cross-cutting testing functionality: Sometimes cross-cutting
functionality like opening/closing a database connection or code to fill a database with test data
is put in a common parent class like AbstractTestCase that all test classes need to inherit from.
Starting with some functions this classes tend to grow up to the point where they become real
maintenance nightmares. Good places to put this needed kind of code can be realized using JUnit
@Rule mechanism. In general favor delegation over inheritance. There are reasons why frameworks
like JEE or JUnit do not use inheritance for technical features - and for the same reasons also project
test frameworks should not do it.

4.15.2 Test Automation Technology Stack

For test automation we use JUnit. However, we are strictly doing all assertions with AssertJ. For mocking
we use mockito. In order to mock remote connections we use wiremock. For testing entire components
or integrations we recommend to use spring-test.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 101

http://joel-costigliola.github.io/assertj/
http://junit.org/
http://joel-costigliola.github.io/assertj/
http://mockito.org/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html#integration-testing

Open Application Standard Platform for Java V2.3.0

4.15.3 Test Doubles

Due to the non-consistent use and understanding of mocks/stubs/fakes/dummies for any kind of
interface for testing purposes, we shortly want to give a common understanding about the different types
of test doubles. Therefore we mainly stick on Gerard Meszaros’s definitions, who also introduced the
term test doubles as generic term for mocks/stubs/fakes/dummies/spys. Another interesting discussion
about stubs VS mocks has been published by Martin Fowler, which focuses more on the differences
between stubs and mocks. A short summary (by Martin Fowler):

» Dummy objects are passed around but never actually used. Usually they are just used to fill parameter
lists.

» Fake objects actually have working implementations, but usually take some shortcut which makes
them not suitable for production (an in memory database is a good example).

» Stubs provide canned answers to calls made during the test, usually not responding at all to anything
outside what's programmed in for the test. Stubs may also record information about calls, such as
an email gateway stub that remembers the messages it 'sent’, or maybe only how many messages
it 'sent'.

* Mocks are objects pre-programmed with expectations, which form a specification of the calls they
are expected to receive.

What both authors do not cover is the applicability of the different concepts. We try to give some
examples, which should make it somehow clearer:

4.15.3.1 Stubs
Best Practices for applications:

» A good way to replace small to medium large boundary systems, whose impact (e.g. latency) should
be ignored during performing load and performance tests of the application under development.

» As stub implementation will rely on state-based verification, there is the threat, that test developers
will partially reimplement the state transitions based on the replaced code. This will immediately lead
to a black maintenance whole, so better use mocks to assure the certain behavior on interface level.

» Do NOT use stubs as basis of a large amount of test cases as due to state-based verification of stubs,
test developers will enrich the stub implementation to become a large monster with its own hunger
after maintenance efforts.

4.15.3.2 Mocks
Best Practices for applications:

» Replace not-needed dependencies of your system-under-test (SUT) to minimize the application
context to start of your component framework.

» Replace dependencies of your SUT to impact the control flow under test without establishing all the
context parameters needed to match the control flow.

* Remember: Not everything has to be mocked! Especially on lower levels of tests like isolated module
tests you can be betrayed into a mocking delusion, where you end up in a hundred lines of code
mocking the whole context and five lines executing the test and verifying the mocks behavior. Always
keep in mind the benefit-cost ratio, when implementing tests using mocks.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 102

http://xunitpatterns.com/Using%20Test%20Doubles.html
http://martinfowler.com/articles/mocksArentStubs.html

Open Application Standard Platform for Java V2.3.0

4.15.3.3 Wiremock

If you need to mock remote connections such as HTTP-Servers, wiremock offers easy to use
functionality. For a full description see the homepage or the github repository. Wiremock can be used
either as a JUnit Rule, in Java outside of JUnit or as a standalone process. The mocked server can be
configured to respond to specific requests in a given way via a fluent Java API, JSON files and JSON
over HTTP. An example as an integration to JUnit can look as follows.

inport static com github.tomakehurst.w renock. core. WreMckConfiguration.w reMckConfig;
i nport com gi t hub. t omakehur st. wi renock. j uni t. W reMckRul e;

public class WreMckO ferlnport {

@Rul e
public WreMckRul e nockServer = new W reMckRul e(w reMbckConfig().dynam cPort());

@est
public void requestDataTest () throws Exception {
int port = this.nockServer.port();

.

This creates a server on a randomly chosen free port on the running machine. You can also specify the
port to be used if wanted. Other than that there are several options to further configure the server. This
includes HTTPs, proxy settings, file locations, logging and extensions.

@est
public void requestDataTest () throws Exception {
thi s. nockServer. st ubFor (get (url Equal To("/ new of fers")).w t hHeader (" Accept”, equal To("application/
json"))
. W t hHeader (" Aut hori zation",
containing("Basic")).wll|Return(aResponse().w thStatus(200).w thFi xedDel ay(1000)
.wi t hHeader (" Cont ent - Type", "application/json").w thBodyFile("/w reMckTest/jsonBodyFile.json")));
}

This will stub the URL | ocal host: port/ new of fers to respond with a status 200 message
containing a header (Content-Type: application/json) and a body with content given in
j sonBodyFi | e. j son if the request matches several conditions. It has to be a GET requestto . ./
new of f er s with the two given header properties.

Note that by default files are located in src/test/resources/__files/. When using only
one WireMock server one can omit the this.nockServer in before the stubFor call
(static method). You can also add a fixed delay to the response or processing delay with
W reMock. addRequest Pr ocessi ngDel ay(ti ne) in order to test for timeouts.

WireMock can also respond with different corrupted messages to simulate faulty behaviour.

@est (expected = ResourceAccessException. cl ass)
public void faultTest() {

t hi s. nockSer ver . st ubFor (get (url Equal To("/fault")).wi || Return(aResponse()

. Wi t hFaul t (Faul t . MALFORMED RESPONSE_CHUNK))) ;
.}

A GET request to ../ fault returns an OK status header, then garbage, and then closes the
connection.

4.15.4 Integration Levels

There are many discussions about the right level of integration for test automation. Sometimes it is
better to focus on small, isolated modules of the system - whatever a "module" may be. In other cases

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 103

http://wiremock.org/
https://github.com/tomakehurst/wiremock

Open Application Standard Platform for Java V2.3.0

it makes more sense to test integrated groups of modules. Because there is no universal answer to this
guestion, OASP only defines a common terminology for what could be tested. Each project must make
its own decision where to put the focus of test automation. There is no worldwide accepted terminology
for the integration levels of testing. In general we we consider ISTQB. However, with a technical focus
on test automation we want to get more precise.

The following picture shows a simplified view of an application based on the OASP reference
architecture. We define four integration levels that are explained in detail below. The boxes in the picture
contain parenthesized numbers. These numbers depict the lowest integration level, a box belongs to.
Higher integration levels also contain all boxes of lower integration levels. When writing tests for a given
integration level, related boxes with a lower integration level must be replaced by test doubles or drivers.

k External System - External System -
Bl Ul Batches (4) Service Consumer Service Provider
A
Y

Web-Server (3)

Y
Application Code (1)

9 5
Filesystem (2)

The main difference between the integration levels is the amount of infrastructure needed to test them.
The more infrastructure you need, the more bugs you will find, but the more instable and the slower
your tests will be. So each project has to make a trade-off between pros and contras of including much
infrastructure in tests and has to select the integration levels that fit best to the project.

Consider, that more infrastructure does not automatically lead to a better bug-detection. There may be
bugs in your software that are masked by bugs in the infrastructure. The best way to find those bugs
is to test with very few infrastructure.

External systems do not belong to any of the integration levels defined here. OASP does not recommend
involving real external systems in test automation. This means, they have to be replaced by test doubles
in automated tests. An exception may be external systems that are fully under control of the own
development team.

The following chapters describe the four integration levels.
4.15.4.1 Level 1 Module Test

The goal of a isolated module test is to provide fast feedback to the developer. Consequently, isolated
module tests must not have any interaction with the client, the database, the file system, the network, etc.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 104

http://istqbexamcertification.com/what-are-software-testing-levels/
https://github.com/oasp/oasp4j/wiki/architecture#technical-architecture
https://github.com/oasp/oasp4j/wiki/architecture#technical-architecture

Open Application Standard Platform for Java V2.3.0

An isolated module test is testing a single classes or at least a small set of classes in isolation. If such
classes depend on other components or external resources, etc. these shall be replaced with a test
double.

For an example see here.
4.15.4.2 Level 2 Component Test

A component test aims to test components or component parts as a unit. These tests typically run with
a (light-weight) infrastructure such as spring-test and can access resources such as a database (e.g.
for DAO tests). Further, no remote communication is intended here. Access to external systems shall
be replaced by a test double.

4.15.4.3 Level 3 Subsystem Test

A subsystem test runs against the external interfaces (e.g. HTTP service) of the integrated subsystem.
In OASP4J the server (JEE application) is the subsystem under test. The tests act as a client (e.g.
service consumer) and the server has to be integrated and started in a container.

Subsystem tests of the client subsystem are described in the OASP4JS-Wiki.

If you are using spring-boot, you should use spri ng-t est as lightweight and fast testing infrastructure
that is already shipped with oasp4j -t est . In case you have to use a full blown JEE application server,
we recommend to use arquillian. To get started look here.

Do not confuse a subsystem test with a system integration test. A system integration test validates the
interaction of several systems where we do not recommend test automation.

4.15.4.4 Level 4 System Test

A system test has the goal to test the system as a whole against its official interfaces such as its Ul
or batches. The system itself runs as a separate process in a way close to a regular deployment. Only
external systems are simulated by test doubles.

The OASP does only give advices for automated system test. In nearly every project there must be
manual system tests, too. This manual system tests are out of scope here.

4.15.4.5 Classifying Integration-Levels

OASP4J defines Category-Interfaces that shall be used as JUnit Categories. Also OSAP4J provides
abstract base classes that you may extend in your test-cases if you like.

OASP4J] further pre-configures the maven build to only run integration levels 1-2 by default (e.g. for fast
feedback in continuous integration). It offers the profiles subsystemtest (1-3) and systemtest (1-4). In
your nightly build you can simply add -Psystemtest to run all tests.

4.15.5 Implementation

This section introduces how to implement tests on the different levels with the given OASP infrastructure
and the proposed frameworks.

4.15.5.1 Module Test

In OASP4J you can extend the abstract class ModuleTest to basically get access to assertions. In order
to test classes embedded in dependencies and external services one needs to provide mocks for that.
As the technology stack recommends we use the Mockito framework to offer this functionality. The
following example shows how to implement Mockito into a JUnit test.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 105

https://github.com/oasp/oasp4j/blob/develop/modules/rest/src/test/java/io/oasp/module/rest/service/impl/RestServiceExceptionFacadeTest.java
http://istqbexamcertification.com/what-is-component-testing/
https://github.com/oasp/oasp4js/wiki/testing
http://arquillian.org/
http://arquillian.org/guides/getting_started/index.html#add_the_arquillian_apis
http://istqbexamcertification.com/what-is-system-integration-testing/
http://istqbexamcertification.com/what-is-system-testing/
https://github.com/oasp/oasp4j/tree/develop/modules/test/src/main/java/io/oasp/module/test/common/api/category
https://github.com/junit-team/junit/wiki/Categories
https://github.com/oasp/oasp4j/tree/develop/modules/test/src/main/java/io/oasp/module/test/common/base
https://github.com/oasp/oasp4j/blob/develop/modules/test/src/main/java/io/oasp/module/test/common/base/ModuleTest.java

Open Application Standard Platform for Java V2.3.0

i nport static org.nockito. Mckito.when;
inport static org.nockito. Mckito.nock;

public class Staffnmanagenent | npl Test extends Mdul eTest {
@Rul e
public MockitoRule rule = MockitoJUnit.rule();

@est
public void testFindStaffMnber() {

)

Note that the test class does not use the @pri ngAppl i cati onConfi gurati on annotation. In a
module test one does not use the whole application. The JUnit rule is the best solution to use in order
to get all needed functionality of Mockito. Static imports are a convenient option to enhance readability
within Mockito tests. You can define mocks with the @wck annotation or the nock(*. cl ass) call.
To inject the mocked objects into your class under test you can use the @ nj ect Mocks annotation.
This automatically uses the setters of St af f nanagenent | npl to inject the defined mocks into the
class under test (CUT) when there is a setter available. In this case the beanMapper and the
st af f Menber Dao are injected. Of course it is possible to do this manually if you need more control.

@mbck

private BeanMapper beanMapper;

@mbck

private StaffMenberEntity staffMenberEntity;

@mbck

private StaffMenberEto staffMenberEto;

@mbck

private StaffMenberDao staffMenber Dao;

@ nj ect Mbcks

St af f managenent | npl st af f managenent | npl = new St af f managenent | npl () ;

The mocked objects do not provide any functionality at the time being. To define
what happens on a method call on a mocked dependency in the CUT one can use
when(condi tion).thenReturn(result).Inthis case we want to test f i ndSt af f Menber (Long
i d) in the Staffmanagementimpl.

public StaffMenberEto findStaffMnber(Long id) {
return get BeanMVapper (). map(get St af f Menber Dao() . fi nd(id), StaffMenberEto.cl ass);

}

In this simple example one has to stub two calls on the CUT as you can see below. For example
the method call of the CUT st af f Menber Dao. fi nd(i d) is stubbed for returning a mock object
st af f Menber Ent i ty that is also defined as mock.

/'l given

long id = 1L;

Cl ass<St af f Menber Et 0> target C ass = St af f Menber Et 0. cl ass;

when(t hi s. st af f Menber Dao. fi nd(id)).thenReturn(this.staffMenberEntity);

when(t hi s. beanMapper . map(this. staf f MenberEntity, targetd ass)).thenReturn(this.staffMenberEto);

[when
Staf f Menber Eto resul tEto = this. staffmanagenent!| npl.findStaffMenber(id);

//then
assert That (resul tEto).isNotNull ();
assert That (resul t Et0).i sEqual To(thi s. st af f Menber Et 0) ;

After the test method call one can verify the expected results. Mockito can check whether a mocked
method call was indeed called. This can be done using Mockito ver i f y. Note that it does not generate

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 106

https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/staffmanagement/logic/impl/StaffmanagementImpl.java

Open Application Standard Platform for Java V2.3.0

any value if you check for method calls that are needed to reach the asserted result anyway. Call
verification can be useful e.g. when you want to assure that statistics are written out without actually
testing them.

4.15.5.2 Component Test

In order to implement a component test one can extend the ComponentTest class to get access to
several test listeners and the Spri ngJUni t 4Cl assRunner . cl ass.

@pri ngAppl i cati onConfi guration(classes = { SpringBoot App. cl ass })
@\ebAppConfi guration
public class Tabl emanagenent Test extends ConponentTest { ... }

Note that a component test uses parts of the infrastructure given by the application. In this case
the Spri ngBoot App is started by annotation. The @¥bAppConfi gur ati on may be necessary if a
WebAppl i cati onCont ext is needed. In the restaurant example one needs login credentials in order
to execute actions. A TestUtil helper class is available to provide this functionality. If you for example
need permission to save a table and find an offer one would use the following procedure in the test.

@ nj ect
private DbTest Hel per dbTest Hel per;

@Bef ore
public void setUp() {

TestUtil.login("waiter", Perm ssionConstants. SAVE_TABLE, Perni ssionConstants.FI ND_ OFFER);
this.dbTest Hel per. set M grati onVersion("0002");
t hi s. dbTest Hel per . r eset Dat abase() ;

}

Of course one can add more permissions if needed. The "waiter" string does not mean the login includes
all permissions a waiter has. This is simply a textual representation for further handling. Only the
explicitly given permissions following this string are granted. In the @ef or e method the database is
reset and migrated to a specific database version using Flyway in order to provide a well-regulated and
reproducible test data environment. To provide a controlled surrounding for other tests one logs out the
user in the @Af t er method by Test Uti | . | ogout ().

As an example let us go to the class Tablemanagement. When testing the method deleteTable() there
are several scenarios that can happen and thus should be covered by tests.

First let us see the valid conditions to delete a table:

» One needs permission to delete a table PermissionConstants.DELETE_TABLE

» The table to delete needs to exist (the table with the given id has to be in the database) and

» The table to delete is required to be TableState.FREE

Invalid conditions are: No credentials, table does not exist or table is not free. If you combine one invalid
condition with valid conditions this yields the following test cases. Note that not working actions yield
exceptions that can be expected in a test method.

» The caller of the method does not have the required credentials

@est (expected = AccessDeni edExcepti on. cl ass)
public void testDel eteTabl eWthoutCredentials() {...}

» The caller has the required credentials but the table to be deleted is occupied

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 107

https://github.com/oasp/oasp4j/blob/develop/modules/test/src/main/java/io/oasp/module/test/common/base/ComponentTest.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/general/common/TestUtil.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/tablemanagement/logic/api/Tablemanagement.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/general/common/api/constants/PermissionConstants.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/tablemanagement/common/api/datatype/TableState.java

Open Application Standard Platform for Java V2.3.0

@est (expected = |1l egal EntityStateException.class)
public void testDel et eTabl eWthCredential sBut Not Del etable() {...}

The caller has the required credentials but the table to be deleted does not exist

@est (expected = Obj ect Not FoundUser Except i on. cl ass)
public void testDel eteTabl eWthCredential sNot Exi sting() {...}

» The caller has the required credentials and the table to be deleted exists and is free

@est
public void testDel eteTabl eWthCredentials() {...}

This type of testing is known as equivalence class analysis. Note that this is a general practice and can
be applied to every level of tests.

4.15.5.3 Subsystem Test

OASP4J provides a simple test infrastructure to aid with the implementation of subsystem tests. It
becomes available by simply subclassing AbstractRestServiceTest.java.

/~k
* Basic configuration of a *RestServiceTest
*/
@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@pri ngAppl i cati onConfi guration(classes = SpringBoot App. cl ass)
public class Tabl emanagenent Rest Servi ceTest extends AbstractRestServiceTest { ... }

The base class provides simple helper and configuration classes for different tasks via getters. Currently
the following are supported:

» Resetting the in-memory database based on Flyway (see RestTestClientBuilder.java)

» Login and logout functionality (see SecurityTestHelper.java)

Additionally, a central point for Java-based bean configuration is available.

» Provision of beans in the test context only (see RestaurantTestConfig.java)

Java-based bean configuration can be turned on for a test by adding the
@spri ngAppl i cati onConfi gurati on annotation as shown in the following listing:

@pri ngAppl i cati onConfiguration(classes = Restaurant Test Confi g. cl ass)

@\ebl nt egr at i onTest

@\ctiveProfiles(profiles = { SpringProfileConstants.JUNIT })

public abstract class Abstract Rest ServiceTest extends Subsystenest { ... }

It is important to notice that the config class does not necessarily need an @onfi guration
annotation. In fact, by omitting this annotation the beans specified in the config class will
be solely available to the subclasses of Abstract Rest ServiceTest (and classes using
@spri ngAppl i cati onConfiguration(classes = Restaurant Test Confi g.cl ass)).

In the TablemanagementRestServiceTest example the default login credentials are name="waiter" and
password="waiter" as given in the appl i cati on. properti es file. If one needs other permissions
such as those of a "chief" it is possible to overwrite this login in the specific test.

@est
public void testDel eteTabl e() {
get Rest Test Cl i ent Bui | der (). setUser("chief");

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 108

http://epf.eclipse.org/wikis/xp/xp/guidances/guidelines/equivalence_class_analysis_E178943D.html
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/general/common/base/AbstractRestServiceTest.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/general/common/RestTestClientBuilder.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/general/common/SecurityTestHelper.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/general/configuration/RestaurantTestConfig.java
https://github.com/oasp/oasp4j/blob/develop/samples/core/src/test/java/io/oasp/gastronomy/restaurant/tablemanagement/service/impl/rest/TablemanagementRestServiceTest.java

Open Application Standard Platform for Java V2.3.0

get Rest Test Cl i ent Bui | der () . set Password("chief");
this.service = get RestTest Cli entBuil der (). build(Tabl emanagenent Rest Servi ce. cl ass);

)

4.15.5.4 System Test
OASP4J does not provide guidance on automated system testing.
4.15.5.5 How to run test levels

The base classes of the four test levels (SystemTest, SubsystemTest, ComponentTest, ModuleTest)
are defined in the oasp4j -t est project under the following fully qualified names:

i 0. oasp. nodul e. t est. common. base. Syst enTest
i 0. oasp. nodul e. t est. conmon. base. Subsyst enilest
i 0. oasp. nodul e. t est. conmon. base. Conponent Test
i 0. oasp. nodul e. t est. common. base. Modul eTest

These classes are annotated with JUnit's @Cat egor y annotation. There exists an according category
for each test level. These categories are aswell located in the oasp4j - t est project under the following
fully qualified names:

i 0. oasp. nodul e. t est. common. api . cat egory. Cat egor ySyst enilest
i 0. oasp. nodul e. t est. conmon. api . cat egory. Cat egor ySubsyst enilest
i 0. oasp. nodul e. t est. conmon. api . cat egory. Cat egor yConponent Test
i 0. oasp. nodul e. t est. conmon. api . cat egory. Cat egor yModul eTest

We have assigned categories to the base classes by adding @Cat egor y in the following way:

@cat egor y(Cat egor ySyst enTest . cl ass)
public abstract class Systenilest extends BaseTest { ... }

@cat egor y(Cat egor ySubsyst enfest . cl ass)
public abstract class SubsystenTest extends BaseTest { ... }

@rat egor y(Cat egor yConponent Test . cl ass)
public abstract class Conponent Test extends BaseTest { ... }

@cat egor y(Cat egor yModul eTest . cl ass)
public abstract class Mdul eTest extends BaseTest { ... }

Now, how can we control the execution of different test levels and categories respectively? In the
pom xnl of the restaurant sample application you can define the following propery:

<properties>

<oasp. t est. excl uded. gr oups>i 0. oasp. nodul e. t est. conmon. api . cat egory. Cat egor ySyst enilest </
oasp. t est. excl uded. gr oups>

</ pr .opert i es>
Here, you can exclude any test level(s) by adding the fully qualified name of the according category

of one or more levels separated by comma. E.g., to exclude Cat egorySubsystenilTest and
Cat egor yConponent Test write the following:

<properties>

<oasp. test.excl uded. groups>i 0. oasp. nodul e. t est. conmon. api . cat egory. Cat egor ySubsyst enifest, i 0. oasp. nodul e. t est. comon. api . c
oasp. t est. excl uded. gr oups>

</ properties>

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 109

Open Application Standard Platform for Java V2.3.0

So, if you now want to run tests using Maven (mvn t est), any tests of the excluded categories are
not executed.

4.15.6 Deployment Pipeline

A deployment pipeline is a semi-automated process that gets software-changes from version control into
production. It contains several validation steps, e.g. automated tests of all integration levels. Because
OASP4J should fit to different project types - from agile to waterfall - it does not define a standard
deployment pipeline. But we recommend to define such a deployment pipeline explicitly for each project
and to find the right place in it for each type of test.

For that purpose, it is advisable to have fast running test suite that gives as much confidence as possible
without needing too much time and too much infrastructure. This test suite should run in an early stage
of your deployment pipeline. Maybe the developer should run it even before he/she checked in the code.
Usually lower integration levels are more suitable for this test suite than higher integration levels.

Note, that the deployment pipeline always should contain manual validation steps, at least manual
acceptance testing. There also may be manual validation steps that have to be executed for special
changes only, e.g. usability testing. Management and execution processes of those manual validation
steps are currently not in the scope of OASP.

4.15.7 Test Coverage

We are using tools (SonarQube/Jacoco) to measure the coverage of the tests. Please always keep in
mind that the only reliable message of a code coverage of X% is that (100-X)% of the code is entirely
untested. It does not say anything about the quality of the tests or the software though it often relates to it.

4.15.8 Test Configuration

This section covers test configuration in general without focusing on integration levels as in the first
chapter.

4.15.8.1 Configure Test Specific Beans

Sometimes it can become handy to provide other or differently configured bean implementations via CDI
than those available in production. For example, when creating beans using @Bean-annotated methods
they are usually configured within those methods. WebSecurityBeansConfig shows an example of such
methods.

@onfiguration
public class WbSecurityBeansConfig {
/1. ..
@Bean
publ i ¢ AccessControl SchemaProvi der accessControl SchemaProvi der () {
/1 actually no additional configuration is shown here
return new AccessControl SchemaProvi der | npl () ;

Il ..

}

AccessCont r ol SchemaPr ovi der allows to programmatically access data defined in some XML
file, e.g. access-control -schema. xm . Now, one can imagine that it would be helpful if
AccessCont r ol SchenmaPr ovi der would point to some other file than the default within a test class.
That file could provide content that differs from the default. The question is: how can | change resource
path of AccessCont r ol SchenmaPr ovi der | npl wihtin a test?

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 110

https://github.com/oasp/oasp4j/blob/develop/samples/core/src/main/java/io/oasp/gastronomy/restaurant/general/configuration/WebSecurityBeansConfig.java

Open Application Standard Platform for Java V2.3.0

One very helpful solution is to use static inner classes. Static inner classes can
contain @ean -annotated methods, and by placing them in the classes parameter
in @pringApplicationConfiguration(classes = { /* pl ace cl ass
here*/ }) annotation the beans returned by these methods are placed in the application
context during test execution. Combining this feature with inheritance allows to override
methods defined in other configuration classes as shown in the following listing where
TempWebSecuri t yConfi g extends WebSecur i t yBeansConf i g. This relationship allows to override
public AccessControl SchemaProvi der accessControl SchemaPr ovi der (). Here we are
able to configure the instance of type AccessContr ol SchemaProvi der | npl before returning
it (and, of course, we could also have used a completely different implementation of the
AccessCont r ol SchenmaPr ovi der interface). By overriding the method the implementation of the
super class is ignored, hence, only the new implementation is called at runtime. Other methods
defined in WebSecur i t yBeansConf i g which are not overridden by the subclass are still dispatched
to WebSecuri t yBeansConfi g.

/1... Oher testing related annotations
@pri ngAppl i cationConfiguration(classes = { TenpWbSecurityConfig.class })
public class SoneTestd ass {

public static class TenpWbSecurityConfig extends WbSecurityBeansConfig {

@verride
@Bean
publ i ¢ AccessControl SchenaProvi der accessControl SchemaProvi der () {

Cl assPat hResour ce resource = new Cl assPat hResour ce(l ocati onPrefix + "access-control-schema3. xm");
AccessControl SchemaProvi der | npl accessControl SchemaProvi der = new
AccessCont r ol SchenaProvi der | npl () ;
accessCont rol SchemaPr ovi der . set AccessCont r ol Schema(resource) ;
return accessControl SchenaProvi der;
}
}

}

The following chapter of the Spring framework documentation explains issue, but uses a slightly different
way to obtain the configuration.

4.15.8.2 Test Data

It is possible to obtain test data in two different ways depending on your test’s integration level.
4.15.9 Debugging Tests

The following two sections describe two debugging approaches for tests. Tests are either run from within
the IDE or from the command line using Maven.

4.15.9.1 Debugging with the IDE

Debugging with the IDE is as easy as always. Even if you want to execute a Subsyst emlest which
needs a Spring context and a server infrastructure to run properly, you just set your breakpoints and click
on Debug As _ JUnit Test. The test infrastructure will take care of initializing the necessary infrastructure
- if everything is configured properly.

4.15.9.2 Debugging with Maven
Please refer to the following two links to find a guide for debugging tests when running them from Maven.

» http://maven.apache.org/surefire/maven-surefire-plugin/examples/debugging.html

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 111

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testcontext-ctx-management-javaconfig
http://maven.apache.org/surefire/maven-surefire-plugin/examples/debugging.html

Open Application Standard Platform for Java V2.3.0

» https://www.eclipse.org/jetty/documentation/9.3.x/debugging-with-eclipse.html

In essence, you first have to start execute a test using the command line. Maven will halt just before
the test execution and wait for your IDE to connect to the process. When receiving a connection the
test will start and then pause at any breakpoint set in advance. The first link states that tests are started
through the following command:

mvn - Dmaven. surefire. debug test

Although this is correct, it will run every test class in your project and - which is time
consuming and mostly unnecessary - halt before each of these tests. To counter this problem
you can simply execute a single test class through the following command (here we execute the
Tabl emanagenent Rest Ser vi ceTest from the restaurant sample application):

mvn test -Dmaven. surefire.debug test -Dtest=Tabl emanagenent Rest Servi ceTest

It is important to notice that you first have to execute the Maven command in the according submodule,
e.g. to execute the Tabl emanagenent Rest Ser vi ceTest you have first to navigate to the core
module’s directory.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 112

https://www.eclipse.org/jetty/documentation/9.3.x/debugging-with-eclipse.html

Open Application Standard Platform for Java V2.3.0

4.16 Transfer-Objects

The technical data model is defined in form of persistent entities. However, passing persistent entities
via call-by-reference across the entire application will soon cause problems:

» Changes to a persistent entity are directly written back to the persistent store when the transaction is
committed. When the entity is send across the application also changes tend to take place in multiple
places endangering data sovereignty and leading to inconsistency.

* You want to send and receive data via services across the network and have to define what section
of your data is actually transferred. If you have relations in your technical model you quickly end up
loading and transferring way too much data.

» Modifications to your technical data model shall not automatically have impact on your external
services causing incompatibilities.

To prevent such problems transfer-objects are used leading to a call-by-value model and decoupling
changes to persistent entities.

4.16.1 Business-Transfer-Objects

For each persistent entity we create or generate a corresponding entity transfer object (ETO) that has
the same properties except for relations. In order to centralize the properties (getters and setters with
their javadoc) we use a common interface for the entity and its ETO.

If we need to pass an entity with its relation(s) we create a corresponding composite transfer object
(CTO) that only contains other transfer-objects or collections of them. This pattern is illustrated by the
following UML diagram from our sample application.

==Java Class»»
(& AbstractEto

i0.035p. gastronomy restaurant. genersl. common. pi.to

==Java Class=»
(& AbstractCro

i0.035p.gastronomy restaurant. genersl. common. 3pi.to

<<lava Class=»

(®OrderPositionEto
io.035p.gastronomy. restaurant salzsmanagament logic. p.to ‘z;gﬁ :'ﬂ:”
rderEto
o orderld: Long _positions <<Java Class>> _order | io.0aSp.gastonomy. IEStaUrSNL. S3leSMANagEMENt. ogic. 3010
o offerid: Long (5 OrderCto

5 serialVersionUD: lon g

o offerMame: String 0. i0.035p. gastronomy.restaurant. salesmanagement. logic. api. to 0.1

= o tableld: long
o state: OrderPositionState o state: OrderState
o price: Money
o comment: String
<<lava Interface>> «<Java Interface=>
3 OrderPosition @ Order
i0.035p.g3STONOMY. I2513Urant. salesmanagement. Common. 3pi #0.035p. g2SroNoMy. restawant. s3lesmanagemsant. commaon. 3pi
<<lava Class=»
(® OrderPositionEntity .
io.0asp gastionomy restaurant salesmanagement persistance api <<Java Class>>
- arder (9 OrderEntity
o offerld: Long - #0.085p. GESLTONOMY. FESt3UIaNt. S3ESManagement. persistence. api
o offerName: String 0
L o tableld: long
o state: OrderPositionState
i o state: OrderState
o price: Money
o comment: String

Figure 4.3. ETOs and CTOs

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 113

Open Application Standard Platform for Java V2.3.0

Finally, there are typically transfer-objects for data that is never persistent. A common example are
search criteria objects (derived from SearchCriteriaTo in our sample application).

The logic layer defines these transfer-objects (ETOs, CTOs, etc.) and will only pass such objects instead
of persistent entities.

4.16.2 Service-Transfer-Objects

If we need to do service versioning and support previous APIs or for external services with a different
view on the data, we create separate transfer-objects to keep the service API stable (see service layer).

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 114

Open Application Standard Platform for Java V2.3.0

4.17 Bean-Mapping

For decoupling you sometimes need to create separate objects (beans) for a different view. E.g. for an
external service you will use a transfer-object instead of the persistence entity so internal changes to
the entity do not implicitly change or break the service.

Therefore you have the need to map similar objects what creates a copy. This also has the benefit that
modifications to the copy have no side-effect on the original source object. However, to implement such
mapping code by hand is very tedious and error-prone (if new properties are added to beans but not
to mapping code):

publ i c PersonTo mapPerson(PersonEntity source) {
PersonTo target = new PersonTo();
target.setFirstNane(source. getFirstName());
target.set Last Nane(source. get Last Nane());

return target;

}

Therefore we are using a BeanMapper for this purpose that makes our lives a lot easier.
4.17.1 Bean-Mapper Dependency

To get access to the BeanMapper we use this dependency in our POM:

<dependency>

<groupl d>i 0. oasp. j ava</ groupl d>

<artifact!| d>oasp4j - beanmappi ng</artifactld>
</ dependency>

4.17.2 Bean-Mapper Usage

Then we can get the BeanMapper via dependency-injection what we typically already provide by an
abstract base class (e.g. AbstractUc). Now we can solve our problem very easy:

PersonEntity person = ...;

return get BeanMapper (). map(person, PersonTo.cl ass);

There is also additional support for mapping entire collections.

Dozer has been configured as Spring bean in the file src/main/resources/config/app/common/beans-
dozer.xml.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 115

Open Application Standard Platform for Java V2.3.0

4.18 Datatypes

A datatype is an object representing a value of a specific type with the following aspects:
* It has a technical or business specific semantic.
« Its JavaDoc explains the meaning and semantic of the value.

It is immutable and therefore stateless (its value assigned at construction time and
can not be modified).

 |tis Serializable.

* It properly implements #equals(Object) and #hashCode() (two different instances
with the same value are equal and have the same hash).

« It shall ensure syntactical validation so it is NOT possible to create an instance with
an invalid value.

« It is responsible for formatting its value to a string representation suitable for sinks
such as Ul, loggers, etc. Also consider cases like a Datatype representing a password
where toString() should return something like "**" instead of the actual password to
prevent security accidents.

* Itis responsible for parsing the value from other representations such as a string (as
needed).

« It shall provide required logical operations on the value to prevent redundancies. Due
to the immutable attribute all manipulative operations have to return a new Datatype
instance (see e.g. BigDecimal.add(java.math.BigDecimal)).

* It should implement Comparable if a natural order is defined.

Based on the Datatype a presentation layer can decide how to view and how to edit
the value. Therefore a structured data model should make use of custom datatypes in
order to be expressive. Common generic datatypes are String, Boolean, Number and
its subclasses, Currency, etc. Please note that both Date and Calendar are mutable
and have very confusing APIs. Therefore, use JSR-310 or jodatime instead. Even if a
datatype is technically nothing but a String or a Number but logically something special
it is worth to define it as a dedicated datatype class already for the purpose of having
a central javadoc to explain it. On the other side avoid to introduce technical datatypes
like String32 for a String with a maximum length of 32 characters as this is not adding
value in the sense of a real Datatype. Itis suitable and in most cases also recommended
to use the class implementing the datatype as APl omitting a dedicated interface.

— mmm project datatype javadoc

See mmm datatype javadoc.

4.18.1 Datatype Packaging

For the OASP we use a common packaging schema. The specifics for datatypes are as following:

Segment Value Explanation

<component> * Here we use the (business)
component defining the

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 116

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/lang/api/Datatype.html

Open Application Standard Platform for Java V2.3.0

Segment Value

<layer> common

Explanation

datatype or general for generic
datatypes.

Datatypes are used across all
layers and are not assigned to a
dedicated layer.

<scope> api

4.18.2 Technical Concerns

Datatypes are always used
directly as API even tough
they may contain (simple)
implementation logic. Most
datatypes are simple wrappers
for generic Java types (e.g.
String) but make these explicit
and might add some validation.

It has been exposed, that multiple technologies like Dozer and QueryDSL'’s (alias API) are heavily
based on reflection to make the programmers world easier. However, to let them work properly with
custom datatypes, the frameworks have to be able to instantiate custom datatypes by non-argument
constructors. Therefore, we propose to implement a non-argument constructor for each datatype of at

least protected visibility.

4.18.3 Datatypes in Entities

The usage of custom datatypes in entities is explained in the persistence layer guide.

4.18.4 Datatypes in Transfer-Objects

4.18.4.1 XML

For mapping datatypes with JAXB see XML guide.

4.18.4.2 JSON

For mapping datatypes from and to JSON see JSON custom mapping.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

117

Open Application Standard Platform for Java V2.3.0

4.19 Transaction Handling

Transactions are technically processed by the data access layer. However, the transaction control has
to be performed in upper layers. To avoid dependencies on persistence layer and technical code in
upper layers, we use AOP to add transaction control via annotations as aspect.

As we recommend using spring, we use the @ransacti onal annotation (for a JEE application
server you would use @t ansacti onAttri but e instead). We use this annotation in the logic layer
to annotate business methods that participate in transactions (what typically applies to all business
components).

@r ansact i onal
public class MyExanpl eLogi cl npl {
public MyDataTo getData(M/CriteriaTo criteria) {

}

4.19.1 Batches

Transaction control for batches is a lot more complicated and is described in the batch layer.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 118

http://spring.io

Open Application Standard Platform for Java V2.3.0

4.20 SQL

For general guides on dealing or avoiding SQL, preventing SQL-injection, etc. you should study data-
access layer.

4.20.1 Naming Conventions

Here we define naming conventions that you should follow whenever you write SQL files:

All SQL-Keywords in UPPER CASE
e Table names in upper CamlICase (e.g. Rest aur ant Or der)

e Column names in camlCase (e.g. dri nkSt at e)

Indentation should be 2 spaces as suggested by OASP for every format.

4.20.1.1 DDL

For DDLs follow these additional guidelines:

* ID column names without underscore (e.g. t abl el d)

» Define columns and constraints inline in the statement to create the table

* Indent column types so they all start in the same text column

» Constraints should be named explicitly (to get a reasonable hint error messages) with:
* PK_{tabl e} for primary key (name optional here as PK constraint are fundamental)

« FK {tabl e} {property} forforeign keys ({t abl e} and { pr operty} are both on the source
where the foreign key is defined)

« UC {tabl e} {property}[_{propertyN]* forunigue constraints

e CK {tabl e} {check} for check constraints ({ check} describes the check, if it is defined on a
single property it should start with the property).

» Databases have hard limitations for names (e.g. 30 characters). If you have to shorten names try to
define common abbreviations in your project for according (business) terms. Especially do not just
truncate the names at the limit.

« If possible add comments on table and columns to help DBAs understanding your schema. This is
also honored by many tools (not only DBA-tools).

Here is a brief example of a DDL:

CREATE SEQUENCE HI BERNATE_SEQUENCE START W TH 100000000000;

CREATE TABLE Revlnfo (

id NUVBER(19) ,
"timestanp" NUMBER(19, 0) ,
"user" VARCHAR2(255 CHAR),

CONSTRAI NT PK_Revl nfo_id PRI MARY KEY (id)
)
COMMENT ON TABLE Revinfo is 'Table with revisions for audit history';

COVMMENT ON COLUWN Revinfo.id is '"Primary key of revision (changing transaction)';

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 119

Open Application Standard Platform for Java V2.3.0

COMMENT ON COLUWN Revinfo."tinmestanp” is 'Date and tinme of the change';

CREATE TABLE st af f Menber (

id NUMBER(19, 0) ,

nmodi ficati onCounter NUVBER(10, 0) NOT NULL,
firstname VARCHAR2(255 CHAR),

| ast nane VARCHAR2(255 CHAR),

l ogin VARCHAR2(255 CHAR) NOT NULL,
role VARCHAR2(10 CHAR),

CONSTRAI NT PK_St af f Menber i d PRI MARY KEY (id),
CONSTRAI NT UK_St af f Menber _rol e UNI QUE (rol e)
)3
COMMENT ON TABLE StaffMenber is ' The enpl oyees of the restaurant';

COMMENT ON COLUWN Revlnfo."user" is 'Login of the user who triggered the change';

4.20.1.2 Data

For insert, update, delete, etc. of data SQL scripts should additionally follow these guidelines:

* Inserts always with the same order of columns in blocks for each table.

* Insert column values always starting with id, modificationCounter, [dtype,] ...

* List columns with fixed length values (boolean, number, enums, etc.) before columns with free text

to support alignment of multiple insert statements

e Pro Tip: Get familiar with column mode of not epad++ when editing large blocks of similar insert

statements.

0, 'chief', "CHEF, '"Charly', 'Chief');

0, 'cook', 'COOX', 'Carl', 'Cook');

0, '"waiter', "WAITER, "WIly', "Witer');

0, 'barkeeper', 'BARKEEPER , 'Bianca', 'Barkeeper');

I NSERT | NTO Product (id, nodificationCounter, dtype, description) VALUES (1,
I NSERT | NTO Product (i d, nodificationCounter, dtype, description) VALUES (2,
I NSERT | NTO Product (i d, nodificationCounter, dtype, description) VALUES (3,
I NSERT | NTO Product (i d, nodificationCounter, dtype, description) VALUES (4,
I NSERT | NTO Product (i d, nodificationCounter, dtype, description) VALUES (5,
I NSERT | NTO Product (i d, nodificationCounter, dtype, description) VALUES (6,

I NSERT | NTO St af f Menber (i d, nodi ficationCounter, |login, role, firstnanme, |astnane)
I NSERT | NTO St af f Menber (i d, nodificationCounter, login, role, firstname, |astnane)
I NSERT | NTO St af f Menber (i d, nodi ficati onCounter, login, role, firstnane, |astnane)

I NSERT | NTO St af f Menber (i d, nodi ficationCounter, |ogin, role, firstnanme, |astnane)

PR R R R

VALUES (0,

VALUES (1,

VALUES (2,

VALUES (3,
"Meal ', 'Schnitzel');
"Meal ', 'Goulasch');
"Meal', 'Pfifferlinge');
"Meal', 'Salat');
"Meal', 'Pizza');
"Meal ', ' Flammkuchen');

See also Database Migrations.

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

120

Open Application Standard Platform for Java V2.3.0

4.21 Accessibility

TODO

http://www.w3.org/ TR/IWCAG20/

http://www.w3.org/WAIl/intro/aria

http://www.einfach-fuer-alle.de/artikel/bitv/

http://www.banu.bund.de

http://www.de.capgemini.com/public-sector/igov

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

121

http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/intro/aria
http://www.einfach-fuer-alle.de/artikel/bitv/
http://www.banu.bund.de
http://www.de.capgemini.com/public-sector/igov

Open Application Standard Platform for Java V2.3.0

4.22 CORS support

When you are developing Javascript client and server application separately, you have to deal with
cross domain issues. We have to request from a origin domain distinct to target domain and browser
does not allow this.

So , we need to prepare server side to accept request from other domains. We need to cover the
following points:

» Accept request from other domains.
» Accept OASP used headers like X- CSRF- TOKEN or cor r el ati onl d.
» Be prepared to receive secured request (cookies).

It is important to note that if you are using security in your request (sending cookies) you have to set
wi t hCredenti al s flag tot r ue in your client side request and deal with special IE8 characteristics.

4.22.1 Configuring CORS support

On the server side we have defined a new filter in Spring security chain filters to support CORS and we
have configured OASP security chain filter to use it.

You only have to change CORSDi sabl ed property value in appl i cati on-defaul t. properties
properties file.

#CORS support
security. cors. enabl ed=fal se

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 122

Open Application Standard Platform for Java V2.3.0

4.23 BLOB support

4.23.1 Introduction

BLOB stands for Binary Large Object. A BLOB may be an image, an office document, ZIP archive or
any other multimedia object. OASP4j supports BLOB via its BinaryObject data type. The OASP Maven
archetype generates the following Java files for dealing with BLOBs:

gener al . conmon. api . Bi nar yObj ect Interface for a BinaryObject

gener al . dat aaccess. api . Bi nar yQbj ect Entlnstance of BinaryObject entity, contains the
actual BLOB

gener al . dat aaccess. api . dao. Bi nar yCbj eddBa@doj 8isaryObject entity

gener al . dat aaccess. base. dao. Bi nar yQhj dotdlermkenphtation of the BinaryObjectDao

general .1 ogic. api.to.Bi naryObj ect Et o ETO for BinaryObject

general . | ogi c. base. UcManageBi nar yObj ed/se case for managing BinaryObject. This use
case contains methods for finding, getting,
deleting and saving a BLOB.

general .1 ogi c. i npl . UCManageBi nar yQbj edtrpigmenentation of the UcManageBinaryObject

4.23.2 Implementing BLOB support: an example

In the sample application the business component Offermanagement uses BLOBs for product pictures.
Feel free to use the following approach as starting point for BLOB support in your application.

4.23.2.1 Logic Layer

Use the methods declared in general .l ogic.base. UcManageBi naryCbj ect in the
implementation of your business component. Let's take a look at an example from the sample
application.

The method

O f er managenent | npl . updat ePr oduct Pi ct ure(Long product|d, Bl ob blob, BinaryCbjectEto binaryQObjectEto)

saves a new picture for a given product.
This is done by calling an appropriate method, declared in the BinaryObject use case.

@verride
@Rol esAl | owed(Per mi ssi onConst ant s. SAVE_PRODUCT_PI CTURE)
public void updat eProduct Pi cture(Long productld, Blob blob, BinaryObjectEto binaryObjectEto) {

bi naryObj ect Eto = get UcManageBi nar yObj ect () . saveBi nar yObj ect (bl ob, bi naryObj ect Et o) ;

4.23.2.2 Service Layer

Following the OASP conventions, you must implement a REST service for each business
component. There you define, how BLOBs are uploaded/downloaded. According to that, the

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 123

Open Application Standard Platform for Java V2.3.0

REST service for the business component Offermanagement is implemented in a class named
OffermanagementRestServicelmpl.

The coding examples below are taken from the afore mentioned class.

The sample application uses the content-type "multipart/mixed" to transfer pictures plus additional
header data.

Upload

@onsunes("mul tipart/m xed")

@rcsT

@at h("/ product/{id}/picture")

public voi d updat eProduct Pi ct ure(@at hParan{"i d") |ong productld,
@ul tipart(value = "binaryQoject Eto", type = Medi aType. APPLI CATI ON_JSON) Bi naryCbj ectEto
bi nar yQbj ect Et o,

@ul tipart(value = "blob", type = Medi aType. APPLI CATI ON_OCTET_STREAM | nput St r eam pi ct ur e)
throws Serial Exception, SQ.Exception, |OException {

Bl ob bl ob = new Seri al Bl ob(1OUtils.readBytesFronftrean(picture));
t hi s. of f er Managenent . updat ePr oduct Pi ct ure(product|d, bl ob, binaryQbjectEto);

A new Blob object is being created by reading the data
(IOU%tils.readByt esFronttrean(picture)).

Download

@roduces("mul tipart/m xed")

@EET

@at h("/ product/{id}/picture")

public MiltipartBody getProductPicture(@athParan("id") long productld) throws SQLException, |CException
{

Bl ob bl ob = this. of fer Managenent . fi ndPr oduct Pi ct ur eBl ob(pr oduct | d);
byte[] data = | QUtils.readBytesFronttrean(bl ob. get Bi naryStrean());

Li st<Attachnment> atts = new Li nkedLi st<>();
atts.add(new Attachnent ("bi naryQObj ect Et 0", Medi aType. APPLI CATI ON_JSON, this. of f er Managenent
. findProduct Pi cture(productlid)));
atts. add(new Attachnent ("bl ob", Medi aType. APPLI CATI ON_OCTET_STREAM new
Byt eArrayl nput St rean(data)));
return new Mil tipartBody(atts, true);

As you may have noticed, the data is loaded into the heap before it is added as an Attachement to the
MultiPart body.

Caution! Using a byte array will cause problems, when
dealing with large BLOBS.

Why is the sample application using a byte array then?

As of now, there is no universal solid way of streaming a BLOB directly from a database to the client
without reading the BLOB's content to memory, when streaming over a RESTful service based on JDBC
and JAX RS. Following this approach means: whenever a file is uploaded or downloaded as BLOB it is
loaded completely to memory before it is written to the database.

4.23.3 Further Reading

» The multipart content type

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International). 124

http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

Open Application Standard Platform for Java V2.3.0

JAX-RS : Support for Multiparts

Component Implementation

BLOBs and the Data Access Layer

Security Vulnerability Unrestricted File Upload

This documentation is licensed under the
Creative Commons License (Attribution-
NoDerivatives 4.0 International).

125

http://cxf.apache.org/docs/jax-rs-multiparts.html
https://github.com/oasp-forge/oasp4j-wiki/wiki/guide-logic-layer#component-implementation
https://github.com/oasp/oasp4j/wiki/guide-dataaccess-layer#blob
https://www.owasp.org/index.php/Unrestricted_File_Upload

	Open Application Standard Platform for Java V2.3.0
	Table of Contents
	Introduction
	1. Architecture
	1.1 Key Principles
	1.2 Architecture Principles
	1.3 Application Architecture
	1.3.1 Business Architecture
	1.3.2 Technical Architecture
	1.3.2.1 Technology Stack

	2. Coding
	2.1 Coding Conventions
	2.1.1 Naming
	2.1.2 Packages
	2.1.3 Code Tasks
	2.1.3.1 TODO
	2.1.3.2 FIXME
	2.1.3.3 REVIEW

	2.1.4 Code-Documentation
	2.1.5 Code-Style
	2.1.5.1 BLOBs
	2.1.5.2 Closing Resources
	2.1.5.3 Lambdas and Streams
	2.1.5.4 Optionals
	2.1.5.5 Encoding
	2.1.5.6 Prefer general API

	3. Layers
	3.1 Client Layer
	3.1.1 JavaScript for Java Developers

	3.2 Service Layer
	3.2.1 Types of Services
	3.2.2 Versioning
	3.2.3 Interoperability
	3.2.4 Service Considerations
	3.2.5 Security

	3.3 Logic Layer
	3.3.1 Component Part
	3.3.1.1 Component Part Interface
	3.3.1.2 Component Part with Simple Interface
	3.3.1.3 Component Part Interface with Use Case Decomposition

	3.3.2 Component Implementation
	3.3.3 Passing Parameters Among Components
	3.3.4 Security
	3.3.4.1 Direct Object References

	3.4 Data-Access Layer
	3.4.1 Persistence
	3.4.1.1 Entity
	A Simple Entity
	Entities and Datatypes
	Enumerations
	BLOB
	Date and Time
	QueryDSL and Custom Types

	Primary Keys

	3.4.1.2 Data Access Object
	DAO Interface
	DAO Implementation

	3.4.1.3 Queries
	Static Queries
	Using Queries to Avoid Bidirectional Relationships

	Dynamic Queries
	Using Wildcards
	Pagination
	Pagination example

	Query Meta-Parameters

	3.4.1.4 Relationships
	n:1 and 1:1 Relationships
	1:n and n:m Relationships
	Eager vs. Lazy Loading
	Cascading Relationships

	3.4.1.5 Embeddable
	3.4.1.6 Inheritance
	3.4.1.7 Concurrency Control
	Optimistic Locking
	Pessimistic Locking

	3.4.1.8 Database Auditing
	3.4.1.9 Testing Entities and DAOs
	3.4.1.10 Principles

	3.4.2 Database Configuration
	3.4.2.1 Database System and Access
	3.4.2.2 Database Migration
	3.4.2.3 Database Logging

	3.4.3 Security
	3.4.3.1 SQL-Injection
	3.4.3.2 Limited Permissions for Application

	3.5 Batch Layer
	3.5.1 Batch architecture
	3.5.1.1 Layering
	Accessing data access layer

	3.5.1.2 Batch administration and execution
	Starting and Stopping Batches
	Starting a Batch Job
	jobName

	Stopping a Job
	Scheduling

	3.5.2 Implementation
	3.5.2.1 Main Challenges
	Transaction handling
	Restarting Batches
	Exception handling in Batches
	Performance issues

	3.5.2.2 Setup
	Database
	Failure information

	General Configuration

	3.5.2.3 Example-Batch
	3.5.2.4 Restarts
	3.5.2.5 Chunk Processing
	ItemReader
	Caching
	Reading from Transactional Queues
	Reading from the Database
	Reading from Files

	ItemProcessor
	ItemWriter
	Writing to Database or Transactional Queues
	Writing to Files

	Saving and Restoring State

	3.5.2.6 Tasklet based Processing
	3.5.2.7 Exception Handling
	Skipping
	Retrying

	3.5.2.8 Listeners
	3.5.2.9 Parameters
	3.5.2.10 Performance Tuning
	3.5.2.11 Testing
	Testing Batch Jobs
	Testing Individual Steps
	Validating Output Files
	Testing Restarts

	4. Guides
	4.1 Dependency Injection
	4.1.1 Key Principles
	4.1.2 Example Bean
	4.1.3 Bean configuration

	4.2 Configuration
	4.2.1 Internal Application Configuration
	4.2.1.1 Spring Boot Application
	4.2.1.2 Standard beans configuration
	4.2.1.3 XML-based beans configuration
	4.2.1.4 Batch configuration
	4.2.1.5 Security configuration
	4.2.1.6 WebSocket configuration
	4.2.1.7 Database Configuration

	4.2.2 Externalized Configuration
	4.2.2.1 Environment Configuration
	4.2.2.2 Business Configuration

	4.3 Logging
	4.3.1 Usage
	4.3.1.1 Maven Integration
	4.3.1.2 Configuration
	4.3.1.3 Logger Access
	4.3.1.4 How to log

	4.3.2 Operations
	4.3.2.1 Log Files
	4.3.2.2 Output format

	4.3.3 Security
	4.3.4 Correlating separate requests

	4.4 Security
	4.4.1 Vulnerabilities and Protection
	4.4.2 Tools
	4.4.2.1 Dependency Check
	4.4.2.2 Penetration Testing

	4.5 Access-Control
	4.5.1 Authentication
	4.5.1.1 Mechanisms
	Basic
	Form Login

	4.5.1.2 Preserve original request anchors after form login redirect
	4.5.1.3 Users vs. Systems

	4.5.2 Authorization
	4.5.2.1 Clarification of terms
	4.5.2.2 Suggestions on the access model
	4.5.2.3 oasp4j-security
	Access Control Schema
	Configuration on URL level
	Configuration on Java Method level
	Check Data-based Permissions

	4.6 Validation
	4.6.1 Stateless Validation
	4.6.1.1 Example
	4.6.1.2 GUI-Integration
	4.6.1.3 Cross-Field Validation

	4.6.2 Stateful Validation

	4.7 Auditing
	4.8 Aspect Oriented Programming (AOP)
	4.8.1 AOP Key Principles
	4.8.2 AOP Usage
	4.8.3 AOP Debugging

	4.9 Exception Handling
	4.9.1 Exception Principles
	4.9.2 Exception Example
	4.9.3 Handling Exceptions

	4.10 Internationalization
	4.10.1 Binding locale information to the user
	4.10.2 Getting internationalizated messages

	4.11 XML
	4.11.1 JAXB
	4.11.1.1 JAXB and Inheritance
	4.11.1.2 JAXB Custom Mapping

	4.12 JSON
	4.12.1 Configure JSON Mapping
	4.12.2 JSON and Inheritance
	4.12.3 JSON Custom Mapping

	4.13 REST
	4.13.1 URLs
	4.13.2 HTTP Methods
	4.13.3 HTTP Status Codes
	4.13.4 Metadata
	4.13.5 JAX-RS
	4.13.5.1 JAX-RS Configuration

	4.13.6 REST Exception Handling
	4.13.7 Recommendations for REST requests and responses
	4.13.7.1 Unparameterized loading of a single resource
	4.13.7.2 Unparameterized loading of a collection of resources
	4.13.7.3 Saving a resource
	4.13.7.4 Parameterized loading of a resource
	Pagination details

	4.13.7.5 Deletion of a resource
	4.13.7.6 Error results

	4.13.8 REST Media Types
	4.13.9 REST Testing
	4.13.10 Security
	4.13.10.1 CSRF
	4.13.10.2 JSON top-level arrays

	4.14 SOAP
	4.14.1 JAX-WS
	4.14.2 SOAP Custom Mapping
	4.14.3 SOAP Testing

	4.15 Testing
	4.15.1 General best practices
	4.15.2 Test Automation Technology Stack
	4.15.3 Test Doubles
	4.15.3.1 Stubs
	4.15.3.2 Mocks
	4.15.3.3 Wiremock

	4.15.4 Integration Levels
	4.15.4.1 Level 1 Module Test
	4.15.4.2 Level 2 Component Test
	4.15.4.3 Level 3 Subsystem Test
	4.15.4.4 Level 4 System Test
	4.15.4.5 Classifying Integration-Levels

	4.15.5 Implementation
	4.15.5.1 Module Test
	4.15.5.2 Component Test
	4.15.5.3 Subsystem Test
	4.15.5.4 System Test
	4.15.5.5 How to run test levels

	4.15.6 Deployment Pipeline
	4.15.7 Test Coverage
	4.15.8 Test Configuration
	4.15.8.1 Configure Test Specific Beans
	4.15.8.2 Test Data

	4.15.9 Debugging Tests
	4.15.9.1 Debugging with the IDE
	4.15.9.2 Debugging with Maven

	4.16 Transfer-Objects
	4.16.1 Business-Transfer-Objects
	4.16.2 Service-Transfer-Objects

	4.17 Bean-Mapping
	4.17.1 Bean-Mapper Dependency
	4.17.2 Bean-Mapper Usage

	4.18 Datatypes
	4.18.1 Datatype Packaging
	4.18.2 Technical Concerns
	4.18.3 Datatypes in Entities
	4.18.4 Datatypes in Transfer-Objects
	4.18.4.1 XML
	4.18.4.2 JSON

	4.19 Transaction Handling
	4.19.1 Batches

	4.20 SQL
	4.20.1 Naming Conventions
	4.20.1.1 DDL
	4.20.1.2 Data

	4.21 Accessibility
	4.22 CORS support
	4.22.1 Configuring CORS support

	4.23 BLOB support
	4.23.1 Introduction
	4.23.2 Implementing BLOB support: an example
	4.23.2.1 Logic Layer
	4.23.2.2 Service Layer

	4.23.3 Further Reading

