
Open Application Standard Platform for Java V1.1.0

Copyright © 2014-2015 the OASP team

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). ii

Table of Contents

Introduction .. vi
1. Architecture .. 1

1.1. Key Principles .. 1
1.2. Architecture Principles .. 1
1.3. Application Architecture .. 1

1.3.1. Business Architecture .. 2
1.3.2. Technical Architecture ... 2

1.3.2.1. Technology Stack ... 4
1.3.3. Infrastructure Architecture .. 5

2. Coding .. 7
2.1. Coding Conventions ... 7

2.1.1. Naming ... 7
2.1.2. Packages .. 7
2.1.3. Code Tasks .. 9

2.1.3.1. TODO .. 9
2.1.3.2. FIXME .. 9
2.1.3.3. REVIEW ... 9

2.1.4. Code-Documentation ... 9
3. Layers .. 10

3.1. Client Layer ... 10
3.1.1. Web Clients .. 10
3.1.2. Native Desktop Clients .. 10
3.1.3. Mobile Clients ... 10
3.1.4. Security ... 10

3.2. Service Layer ... 11
3.2.1. Types of Services .. 11
3.2.2. Versioning ... 11
3.2.3. Interoperability ... 12
3.2.4. Protocol .. 12

3.2.4.1. SOAP ... 12
JAX-WS .. 12
SOAP Custom Mapping .. 13
SOAP Testing ... 13

3.2.4.2. REST ... 13
JAX-RS ... 14

JAX-RS Configuration ... 15
HTTP Status Codes .. 15
REST Exception Handling ... 15
REST Media Types ... 16
REST Testing ... 16

3.2.4.3. HTTP-Invoker ... 16
3.2.5. Service Considerations .. 16
3.2.6. Security ... 17

3.3. Logic Layer .. 18
3.3.1. Use Case .. 18
3.3.2. Component Interface ... 19

3.3.2.1. Passing Parameters Among Components .. 19

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). iii

3.3.2.2. Use Case Example ... 20
3.4. Data-Access Layer ... 21

3.4.1. Persistence ... 21
3.4.1.1. Entity .. 21

A Simple Entity ... 21
Entities and Datatypes .. 21

Enumerations .. 22
BLOB ... 22
Date and Time .. 23

Primary Keys .. 23
3.4.1.2. Data Access Object .. 23

DAO Interface ... 23
DAO Implementation ... 23

3.4.1.3. Queries .. 24
Static Queries ... 24

Using Queries to Avoid Bidirectional Relationships 25
Dynamic Queries .. 25
Using Wildcards .. 25
Query Meta-Parameters and Paging .. 25

3.4.1.4. Relationships .. 26
n:1 and 1:1 Relationships .. 26
1:n and n:m Relationships ... 26
Eager vs. Lazy Loading ... 28
Cascading Relationships ... 28

3.4.1.5. Embeddable ... 28
3.4.1.6. Inheritance ... 30
3.4.1.7. Concurrency Control ... 31

Optimistic Locking ... 31
Pessimistic Locking ... 32

3.4.1.8. Database Auditing .. 32
3.4.1.9. Testing Entities and DAOs .. 32
3.4.1.10. Principles .. 32

3.4.2. Database Configuration ... 32
3.4.2.1. Database System and Access ... 33
3.4.2.2. Database Migration ... 33

3.4.3. Security ... 33
3.4.3.1. SQL-Injection .. 33
3.4.3.2. Limited Permissions for Application .. 33

4. Guides .. 34
4.1. Logging .. 34

4.1.1. Usage ... 34
4.1.1.1. Maven Integration ... 34
4.1.1.2. Configuration .. 34
4.1.1.3. Logger Access .. 34
4.1.1.4. How to log .. 34

4.1.2. Operations .. 35
4.1.2.1. Log Files .. 35
4.1.2.2. Output format ... 36

4.1.3. Security ... 36
4.2. Security ... 37

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). iv

4.2.1. Authentication .. 37
4.2.1.1. Mechanisms ... 37

Basic .. 37
Form Login ... 38

4.2.1.2. Preserve original request anchors after form login redirect 38
4.2.1.3. Users vs. Systems .. 39

4.2.2. Authorization ... 39
4.2.2.1. Clarification of terms ... 39
4.2.2.2. Suggestions on the access model ... 40
4.2.2.3. oasp4j-security .. 40

Access Control Schema .. 41
Configuration on URL level .. 43
Configuration on Java Method level ... 43
Check Data-based Permissions ... 44

4.2.3. Vulnerabilities and Protection ... 44
4.3. Dependency Injection ... 46

4.3.1. Example Bean ... 46
4.3.2. Spring Usage and Conventions .. 46

4.3.2.1. Spring XML Files .. 47
4.3.3. Key Principles ... 47

4.4. Configuration .. 49
4.4.1. Application Configuration ... 49

4.4.1.1. beans-application .. 49
4.4.1.2. beans-aspect .. 49
4.4.1.3. Logging configuration .. 49

4.4.2. Environment Configuration ... 49
4.4.2.1. application.properties .. 50

4.4.3. Business Configuration .. 50
4.4.4. Configuration Files ... 50

4.5. Validation ... 52
4.5.1. Stateless Validation ... 52

4.5.1.1. Example ... 52
4.5.1.2. GUI-Integration ... 53
4.5.1.3. Cross-Field Validation ... 53

4.5.2. Stateful Validation .. 53
4.6. Auditing ... 54
4.7. Aspect Oriented Programming (AOP) .. 55

4.7.1. AOP Key Principles ... 55
4.7.2. AOP Usage ... 55

4.8. Exception Handling .. 56
4.8.1. Exception Principles .. 56
4.8.2. Exception Example .. 56
4.8.3. Handling Exceptions .. 57

4.9. Internationalization .. 58
4.10. XML ... 59

4.10.1. JAXB ... 59
4.10.1.1. JAXB and Inheritance ... 59
4.10.1.2. JAXB Custom Mapping ... 59

4.11. JSON ... 60
4.11.1. JSON and Inheritance .. 60

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). v

4.11.2. JSON Custom Mapping ... 61
4.12. Testing ... 63

4.12.1. General best practices ... 63
4.12.2. Test Automation Technology Stack ... 63
4.12.3. Test Doubles ... 64

4.12.3.1. Stubs .. 64
4.12.3.2. Mocks .. 64

4.12.4. Integration Levels .. 65
4.12.4.1. Level 1 Module Test ... 66
4.12.4.2. Level 2 Component Test ... 66
4.12.4.3. Level 3 Subsystem Test .. 66
4.12.4.4. Level 4 System Test ... 66
4.12.4.5. Classifying Integration-Levels .. 66

4.12.5. Deployment Pipeline .. 66
4.12.6. Test Coverage ... 67

4.13. Transfer-Objects ... 68
4.13.1. Business-Transfer-Objects .. 68
4.13.2. Service-Transfer-Objects .. 69

4.14. Bean-Mapping .. 70
4.14.1. Bean-Mapper Dependency ... 70
4.14.2. Bean-Mapper Usage .. 70

4.15. Datatypes ... 71
4.15.1. Datatype Packaging ... 71
4.15.2. Datatypes in Entities .. 72
4.15.3. Datatypes in Transfer-Objects .. 72

4.15.3.1. XML ... 72
4.15.3.2. JSON ... 72

4.16. Transaction Handling .. 73
4.16.1. Batches ... 73

4.17. Accessibility ... 74

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). vi

Introduction
The Open Application Standard Platform (OASP) provides a solution to building applications which
combine best-in-class frameworks and libraries as well as industry proven practices and code
conventions. It massively speeds up development, reduces risks and helps you to deliver better results.

This document contains the complete compendium of the Open Application Standard Platform for Java
(OASP4J). From this link you will also find the latest release or nightly snapshot of this documentation.

http://oasp.io
http://oasp.io/oasp4j
http://oasp.io/oasp4j

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 1

1. Architecture
There are many different views on what is summarized by the term architecture. First we introduce the
key principles and architecture principles of the OASP. Then we go into details of the the architecture
of an application.

1.1 Key Principles

For the OASP we follow these fundamental key principles for all decisions about architecture, design,
or choosing standards, libraries, and frameworks:

• KISS
Keep it small and simple

• Open
Commitment to open standards and solutions (no required dependencies to commercial or vendor-
specific standards or solutions)

• Patterns
We concentrate on providing patterns, best-practices and examples rather than writing framework
code.

• Solid
We pick solutions that are established and have proved to be solid and robust in real-live (business)
projects.

1.2 Architecture Principles

Additionally we define the following principles that our architecture is based on:

• Component Oriented Design
We follow a strictly component oriented design to address the following sub-principles:

• Separation of Concerns

• Reusability and avoiding redundant code

• Information Hiding via component API and its exchangeable implementation treated as secret.

• Design by Contract for self-contained, descriptive, and stable component APIs.

• Layering as well as separation of business logic from technical code for better maintenance.

• Data Sovereignty (and high cohesion with low coupling) says that a component is responsible for
its data and changes to this data shall only happen via the component. Otherwise maintenance
problems will arise to ensure that data remains consistent. Therefore interfaces of a component
that may be used by other components are designed call-by-value and not call-by-reference.

• Homogeneity
Solve similar problems in similar ways and establish a uniform code-style.

1.3 Application Architecture

For the architecture of an application we distinguish the following views:

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Redundant_code
http://en.wikipedia.org/wiki/Information_hiding

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 2

• The Business Architecture describes an application from the business perspective. It divides the
application into business components and with full abstraction of technical aspects.

• The Technical Architecture describes an application from the technical implementation perspective.
It divides the application into technical layers and defines which technical products and frameworks
are used to support these layers.

• The Infrastructure Architecture describes an application from the operational infrastructure
perspective. It defines the nodes used to run the application including clustering, load-balancing and
networking.

1.3.1 Business Architecture

The business architecture divides the application into business components. A business component
has a well-defined responsibility that it encapsulates. All aspects related to that responsibility have
to be implemented within that business component. Further the business architecture defines the
dependencies between the business components. These dependencies need to be free of cycles.
A business component exports his functionality via well-defined interfaces as a self-contained API.
A business component may use another business component via its API and compliant with the
dependencies defined by the business architecture.

As the business domain and logic of an application can be totally different, the OASP can not define a
standardized business architecture. Depending on the business domain it has to be defined from scratch
or from a domain reference architecture template. For very small systems it may be suitable to define
just a single business component containing all the code.

1.3.2 Technical Architecture

The technical architecture divides the application into technical layers based on the multilayered
architecture. A layer is a unit of code with the same category such as service or presentation logic. A
layer is therefore often supported by a technical framework. Each business component can therefore
be split into component parts for each layer. However, a business component may not have component
parts for every layer (e.g. only a presentation part that utilized logic from other components).

An overview of the technical reference architecture of the OASP is given by figure "Technical Reference
Architecture". It defines the following layers visualized as horizontal boxes:

• client layer for the front-end (GUI).

• service layer for the services used to expose functionality of the back-end to the client or other
consumers.

• logic layer for the business logic.

• data-access layer for the data access (esp. persistence).

Also you can see the (business) components as vertical boxes (e.g. A and X) and how they are
composed out of component parts each one assigned to one of the technical layers.

Further, there are technical components for cross-cutting aspects grouped by the gray box on the left.
Here is a complete list:

• Security

http://en.wikipedia.org/wiki/Multilayered_architecture
http://en.wikipedia.org/wiki/Multilayered_architecture

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 3

• Logging

• Monitoring

• Transaction-Handling

• Exception-Handling

• Internationalization

• Dependency-Injection

Subs ys tem Server

Cros s -Cutting

Service-Layer

Logic-Layer

Data-Acces s -Layer

Security

Logging

Monitoring

Trans action
Handling

Exception
Handling

Subs ys tem Client

Cros s -Cutting Client-Layer

HTTPS

Client-
Component X

Client-
Component ...

Server-
Component ...

Client-
Component A

Server-
Component Y

Server-
Component Z

Caching

Caching

External Sys tem S1
(Service Cons umer)

External Sys tem S2
(Service Provider)

Server-
Component X

Server-
Component A

X-Entities &
X-DAOs

A-Entities &
A-DAOs

A-Services

A-Us eCas es

X-Services Y-Services

X-Us eCas es Y-Us eCas es Z-Us eCas es

Z-DAOs

A-Dialogs X-Dialogs

Figure 1.1. Technical Reference Architecture

We reflect this architecture in our code as described in our coding conventions allowing a traceability of
business components, use-cases, layers, etc. into the code and giving developers a sound orientation
within the project.

Further, the architecture diagram shows the allowed dependencies illustrated by the dark green
connectors. Within a business component a component part can call the next component part on the
layer directly below via a dependency on its API (vertical connectors). While this is natural and obvious it
is generally forbidden to have dependencies upwards the layers or to skip a layer by a direct dependency

https://github.com/oasp/oasp4j/wiki/guide-service-layer
https://github.com/oasp/oasp4j/wiki/guide-logic-layer
https://github.com/oasp/oasp4j/wiki/guide-dataaccess-layer
https://github.com/oasp/oasp4j/wiki/guide-security
https://github.com/oasp/oasp4j/wiki/guide-logging
https://github.com/oasp/oasp4j/wiki/guide-monitoring
https://github.com/oasp/oasp4j/wiki/guide-transactions
https://github.com/oasp/oasp4j/wiki/guide-exceptions
https://github.com/oasp/oasp4j/wiki/guide-client-layer
https://github.com/oasp/oasp4j/wiki/guide-caching
https://github.com/oasp/oasp4j/wiki/guide-caching

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 4

on a component part two or more layers below. The general dependencies allowed between business
components are defined by the business architecture. In our reference architecture diagram we assume
that the business component X is allowed to depend on component A. Therefore a use-case within the
logic component part of X is allowed to call a use-case from A via a dependency on the component API.
The same applies for dialogs on the client layer. This is illustrated by the horizontal connectors. Please
note that persistence entities are part of the API of the data-access component part so only the logic
component part of the same business component may depend on them.

The technical architecture has to address non-functional requirements:

• scalability
is established by keeping state in the client and making the server state-less (except for login session).
Via load-balancers new server nodes can be added to improve performance (horizontal scaling).

• availability and reliability
are addressed by clustering with redundant nodes avoiding any single-point-of failure. If one node
fails the system is still available. Further the software has to be robust so there are no dead-locks or
other bad effects that can make the system unavailable or not reliable.

• security
is archived in the OASP by the right templates and best-practices that avoid vulnerabilities. See
security guidelines for further details.

• performance
is obtained by choosing the right products and proper configurations. While the actual implementation
of the application matters for performance a proper design is important as it is the key to allow
performance-optimizations (see e.g. caching).

1.3.2.1 Technology Stack

The technology stack of the OASP is illustrated by the following table.

Table 1.1. Technology Stack of OASP

Topic Detail Standard Suggested
implementation

runtime language & VM Java Oralce JDK

runtime servlet-container JEE tomcat

persistence OR-mapper JPA hibernate

batch framework JSR352 spring-batch

service SOAP services JAX-WS CXF

service REST services JAX-RS CXF

logging framework slf4j logback

validation framework beanvalidation/JSR303 hibernate-validator

component
management

dependency injection JSR330 & JSR250 spring

http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://hibernate.org/orm/
https://jcp.org/en/jsr/detail?id=352
http://projects.spring.io/spring-batch/
https://jcp.org/en/jsr/detail?id=224
http://cxf.apache.org/
https://jax-rs-spec.java.net/
http://cxf.apache.org/
http://www.slf4j.org/
http://logback.qos.ch/
http://beanvalidation.org/
http://hibernate.org/validator/
https://jcp.org/en/jsr/detail?id=330
https://jcp.org/en/jsr/detail?id=250
http://spring.io/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 5

Topic Detail Standard Suggested
implementation

security Authentication &
Authorization

JAAS spring-security

monitoring framework JMX spring

monitoring HTTP Bridge HTTP & JSON jolokia

AOP framework dynamic proxies spring AOP

1.3.3 Infrastructure Architecture

The infrastructure architecture describes an application from the operational infrastructure perspective.
It defines the nodes (physical or virtual machines) used to run the application as well as additional
devices such as loadbalancers, firewalls, etc. and the communication paths between these elements.
Please note that this highly depends on the operational infrastructure so it is just a suggestion.

An overview of the infrastructure reference architecture of the OASP is given by figure "Infrastructure
Reference Architecture" that it is based on SAGA. The infrastructure reference architecture defines the
following tiers visualized as dashed boxes:

• Information-Tier
contains the systems for communication with users and external systems. Here authentication and
per-authorization takes place in order to keep not permitted requests out of the lower tiers. Also this is
the central place for an IDS. Besides protocol-transformation and other technical aspects the systems
in this tier act as proxies to the real applications in the logic-tier.

• Application-Tier
contains the actual business applications as well as applications for cross cutting logic (e.g. Servers
for GIS, LDAP, Printing, etc.). These systems should be build following the principles of the application
architecture.

• Data-Tier
contains the systems for storing the data such as an RDBMS.

Each of these tiers technically represent a demilitarized zone (DMZ) and are therefore separated by
firewalls.

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://projects.spring.io/spring-security/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://spring.io/
http://www.jolokia.org
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html
http://docs.spring.io/autorepo/docs/spring/3.0.6.RELEASE/spring-framework-reference/html/aop.html
http://www.cio.bund.de/Web/DE/Architekturen-und-Standards/SAGA/saga_node.html
http://en.wikipedia.org/wiki/Intrusion_detection_system
http://en.wikipedia.org/wiki/DMZ_%28computing%29

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 6

Portal Clus ter

Information-Tier

Service-Gateway Clus ter Generic Info Clus ter

Loadbalancer

Firewall

Portal Server N

Portal Server ...

Portal Server 1

Service-Gateway Server N

Service-Gateway Server ...

Service-Gateway Server 1

Server N

Server ...

Server 1 (e .g . Mail)

Application Clus ter

Application-Tier

Acces s -Manager Clus ter Generic Logic Clus ter

Loadbalancer

Firewall

Application Server N

Application Server ...

Application Server 1

Acces s -Manager Server N

Acces s -Manager Server ...

Acces s -Manager Server 1

Server N

Server ...

Server 1 (e .g . LDAP, Print)

Databas e Clus ter

Data-Tier

SAN

Firewall

Databas e Server N

Databas e Server ...

Databas e Server 1

Inte rne t /
Intrane t

Figure 1.2. Infrastructure Reference Architecture

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 7

2. Coding

2.1 Coding Conventions

The code should follow general conventions for Java (see Oracle Naming Conventions, Google Java
Style, etc.).We consider this as common sense and provide configurations for SonarQube and related
tools such as Checkstyle instead of repeating this here.

2.1.1 Naming

Besides general Java naming conventions, we follow the additional rules listed here explicitly:

• Always use short but speaking names (for types, methods, fields, parameters, variables, constants,
etc.).

• Avoid having duplicate type names. The name of a class, interface, enum or annoation should be
unique within your project unless this is intentionally desired in a special and reasonable situation.

• Avoid artificial naming constructs such as prefixes (I*) or suffixes (*IF) for interfaces.

• Use CamlCase even for abbreviations (XmlUtil instead of XMLUtil)

• Names of Generics should be easy to understand. Where suitable follow the common rule E=Element,
T=Type, K=Key but feel free to use longer names for more specific cases such as ID, DTO or ENTITY.
The capitalized naming helps to distinguish a generic type from a regular class.

2.1.2 Packages

Java Packages are the most important element to structure your code. We use a strict packaging
convention to map technical layers and business components (slices) to the code (See technical
architecture for further details). By using the same names in documentation and code we create a strong
link that gives orientation and makes it easy to find from business requirements, specifications or story
tickets into the code and back. Further we can use tools such as SonarQube and SonarGraph to verify
architectural rules.

For an OASP based application we use the following Java-Package schema:

<basepackage>.<component>.<layer>.<scope>[.<detail>]*

For an application as part of an IT application landscape we recommend to use the followng schema
for <basepackage>:

<organization>.<domain>.<application>

E.g. in our example application we find the DAO interfaces for the salesmanagement component in the
package io.oasp.gastronomy.restaurant.salesmanagement.dataaccess.api.dao

Table 2.1. Segments of package schema

Segment Description Example

<organization> Is the basic Java Package
name-space of the organization

io.oasp

http://www.oracle.com/technetwork/java/namingconventions-139351.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://www.sonarqube.org/
http://checkstyle.sourceforge.net/
http://www.sonarqube.org/
http://www.hello2morrow.com/products/sonargraph

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 8

Segment Description Example

owning the code following
common Java Package
conventions. Consists
of multiple segments
corresponding to the Internet
domain of the organization.

<domain> Is the business domain of
the application. Especially
important in large enterprises
that have an large IT landscape
with different domains.

gastronomy

<application> The name of the application
build in this project.

restaurant

<component> The (business) component the
code belongs to. It is defined
by the business architecture
and uses terms from the
business domain. Use the
implicit component general for
code not belonging to a specific
component (foundation code).

salesmanagement

<layer> The name of the technical layer
(See technical architecture)
which is one of the predefined
layers (dataaccess, logic,
service, batch, gui, client) or
common for code not assigned
to a technical layer (datatypes,
cross-cutting concerns).

dataaccess

<scope> The scope which is one of api
(official API to be used by other
layers or components), base
(basic code to be reused by
other implementations) and impl
(implementation that should
never be imported from outside)

api

<detail> Here you are free to further
divide your code into sub-
components and other
concerns according to the size
of your component part.

dao

Please note that for library modules where we use io.oasp.module as <basepackage> and the name
of the module as <component>. E.g. the API of our monitoring module can be found in the package
io.oasp.module.monitoring.common.api.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 9

2.1.3 Code Tasks

Code spots that need some rework can be marked with the following tasks tags. These are already
properly pre-configured in your development environment for auto completion and to view tasks you are
responsible for. It is important to keep the number of code tasks low. Therefore every member of the
team should be responsible for the overall code quality. So if you change a piece of code and hit a code
task that you can resolve in a reliable way do this as part of your change and remove the according tag.

2.1.3.1 TODO

Used to mark a piece of code that is not yet complete (typically because it can not be completed due
to a dependency on something that is not ready).

 // TODO <author> <description>

A TODO tag is added by the author of the code who is also responsible for completing this task.

2.1.3.2 FIXME

 // FIXME <author> <description>

A FIXME tag is added by the author of the code or someone who found a bug he can not fix right now.
The <author> who added the FIXME is also responsible for completing this task. This is very similar to a
TODO but with a higher priority. FIXME tags indicate problems that should be resolved before a release
is completed while TODO tags might have to stay for a longer time.

2.1.3.3 REVIEW

 // REVIEW <responsible> (<reviewer>) <description>

A REVIEW tag is added by a reviewer during a code review. Here the original author of the code is
responsible to resolve the REVIEW tag and the reviewer is assigning this task to him. This is important
for feedback and learning and has to be aligned with a review "process" where people talk to each other
and get into discussion. In smaller or local teams a peer-review is preferable but this does not scale
for large or even distributed teams.

2.1.4 Code-Documentation

As a general goal the code should be easy to read and understand. Besides clear naming the
documentation is important. We follow these rules:

• APIs (especially component interfaces) are properly documented with JavaDoc.

• JavaDoc shall provide actual value - we do not write JavaDoc to satisfy tools such as checkstyle but
to express information not already available in the signature.

• We make use of {@link} tags in JavaDoc to make it more expressive.

• JavaDoc of APIs describes how to use the type or method and not how the implementation internally
works.

• To document implementation details, we use code comments (e.g. // we have to flush explicitly to
ensure version is up-to-date). This is only needed for complex logic.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 10

3. Layers

3.1 Client Layer

There are various technical approaches to build GUI clients. The OASP proposes rich clients that
connect to the server via data-oriented services (e.g. using REST with JSON). In general we have to
distinguish the following types of clients:

• web clients

• native desktop clients

• (native) mobile clients

3.1.1 Web Clients

Currently we focus on building web-clients. And so far we offer a Java Script based client provided by
OASP4JS.

3.1.2 Native Desktop Clients

Currently not addressed. There are plans about JavaFx for the future.

3.1.3 Mobile Clients

Dependent on target mobile platform. Android may be addressed due to Java.

To support all mobile platforms with moderate effort, we recommend to use Cordova and ionic.

3.1.4 Security

Security is not only an aspect for the server-side but also for clients. Especially in web-clients security
threads such as XSS and CSRF have to be addressed. Therefore you should use proper frameworks
that systematically prevent such security pitfalls. It should be easy for developers to do things correct
and hard to do things wrong. This is absolutely not the case with plain web-technology. Therefore you
should follow the guidelines of OASP4JS to prevent security problems.

https://github.com/oasp/oasp4js
http://cordova.apache.org/
http://ionicframework.com/
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://github.com/oasp/oasp4js

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 11

3.2 Service Layer

The service layer is responsible to expose functionality of the logical layer to external consumers over
a network. It is responsible for the following aspects:

• transaction control

• authorization

• transformation of functionality to technical protocols

3.2.1 Types of Services

If you want to create a service please distinguish the following types of services:

• External Services
are used for communication between different companies, vendors, or partners.

• Internal Services
are used for communication between different applications in the same application landscape of the
same vendor.

• Back-end Services
are internal services between Java back-ends typically with different release and deployment cycles
(otherwise if not Java consider this as external service).

• JS-Client Services
are internal services provided by the Java back-end for JavaScript clients (GUI).

• Java-Client Services
are internal services provided by the Java back-end for for a native Java client (JavaFx, EclipseRcp,
etc.).

The choices for technology and protocols will depend on the type of service. Therefore the following
table gives a guideline for aspects according to the service types. These aspects are described below.

Table 3.1. Aspects according to service-type

Aspect External Service Back-end
Service

JS-Client Service Java-Client
Service

versioning required required not required not required

interoperability mandatory not required implicit not required

recommended
protocol

SOAP or REST HTTP-Invoker REST+JSON HTTP-Invoker

3.2.2 Versioning

For services consumed by other applications we use versioning to prevent incompatibilities between
applications when deploying updates. This is done by the following conventions:

• We define a two digit version number separated by underscore and prefixed with v for version (e.g.
v1_0).

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 12

• We use the version number as part of the Java package defining the service API (e.g.
com.foo.application.component.service.api.v1_0)

• We use the version number as part of the service name in the remote URL (e.g. https://
application.foo.com/services/ws/component/v1_0/MyService)

• Whenever we need to change the API of a service we create a new version (e.g. v1_1) as an isolated
copy of the previous version of the service. In the implementation of different versions of the same
service we can place compatibility code and delegate to the same unversioned use-case of the logic
layer whenever possible.

• For maintenance and simplicity we avoid keeping more than one previous version.

Note

(JH) Should we distinguish between major and minor version here (this is more implementation
specific and can cause mystic discussions where linear versioning v1, v2, v3 would be more
KISS)?

3.2.3 Interoperability

For services that are consumed by clients with different technology interoperability is required. This is
addressed by selecting the right protocol following protocol-specific best practices and following our
considerations especially simplicity.

3.2.4 Protocol

For services there are different protocols. Those relevant for and recommended by OASP4J are listed
in the following sections with examples how to implement them in Java.

3.2.4.1 SOAP

SOAP is a common protocol that is rather complex and heavy. It allows to build inter-operable and well
specified services (see WSDL). SOAP is transport neutral what is not only an advantage. We strongly
recommend to use HTTPS transport and ignore additional complex standards like WS-Security and use
established HTTP-Standards such as RFC2617 (and RFC5280).

JAX-WS

For building web-services with Java we use the JAX-WS standard. There are two approaches:

• code first

• contract first

Here is an example in case you define a code-first service. We define a regular interface to define the
API of the service and annotate it with JAX-WS annotations:

@WebService

public interface TablemanagmentWebService {

 @WebMethod

 @WebResult(name = "message")

 TableEto getTable(@WebParam(name = "id") String id);

}

And here is a simple implementation of the service:

https://jcp.org/en/jsr/detail?id=224

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 13

@Named("TablemanagementWebService")

@WebService(endpointInterface =

 "io.oasp.gastronomy.restaurant.tablemanagement.service.api.ws.TablemanagmentWebService")

public class TablemanagementWebServiceImpl implements TablemanagmentWebService {

 private Tablemanagement tableManagement;

 @Override

 public TableEto getTable(String id) {

 return this.tableManagement.findTable(id);

 }

Finally we have to register our service implementation in the spring configuration file beans-service.xml:

 <jaxws:endpoint id="tableManagement" implementor="#TablemanagementWebService" address="/ws/

Tablemanagement/v1_0"/>

The implementor attribute references an existing bean with the ID TablemanagementWebService that
corresponds to the @Named annotation of our implementation (see dependency injection guide). The
address attribute defines the URL path of the service.

SOAP Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to write adapters for JAXB (see XML).

SOAP Testing

For testing SOAP services in general consult the testing guide.

For testing SOAP services manually we strongly recommend SoapUI.

3.2.4.2 REST

REST is an inter-operable protocol that is more lightweight than SOAP. However, it is no real standard
and can cause confusion. Therefore we define best practices here to guide you. For a general
introduction consult the wikipedia. REST services are called via HTTP(S) URIs. We distinguish between
collection and element URIs:

• A collection URI is build from the rest service URI by appending the name of a collection. This is
typically the name of an entity. Such URI identifies the entire collection of all elements of this type.
Example: https://mydomain.com/myapp/services/rest/mycomponent/myentity

• An element URI is build from a collection URI by appending an element ID. It identifies a single element
(entity) within the collection. Example: https://mydomain.com/myapp/services/rest/mycomponent/
myentity/42

The following table specifies how to use the HTTP methods (verbs) for collection and element URIs
properly (see wikipedia). For general design considerations beyond this documentation see the API
Design eBook.

Table 3.2. Usage of HTTP methods

HTTP Method Meaning (Element URI) Meaning (Collection URI)

GET Read element Read all elements (typically
using paging and hit limit to
prevent loading too much data)

http://www.soapui.org/
http://en.wikipedia.org/wiki/Representational_State_Transfer
https://mydomain.com/myapp/services/rest/mycomponent/myentity
https://mydomain.com/myapp/services/rest/mycomponent/myentity/42
https://mydomain.com/myapp/services/rest/mycomponent/myentity/42
http://en.wikipedia.org/wiki/Representational_State_Transfer#Applied_to_web_services
https://pages.apigee.com/web-api-design-ebook.html
https://pages.apigee.com/web-api-design-ebook.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 14

HTTP Method Meaning (Element URI) Meaning (Collection URI)

PUT Replace element Replace entire collection
(typically not supported)

POST Not supported Create a new element in the
collection

DELETE Delete element Delete entire collection
(typically not supported)

JAX-RS

For implementing REST services we use the JAX-RS standard. As an implementation we recommend
CXF. For JSON bindings we use Jackson while XML binding works out-of-the-box with JAXB. To
implement a service you simply write a regular class and use JAX-RS annotations to annotate methods
that shall be exposed as REST operations. Here is a simple example:

@Path("/tablemanagement")

@Named("TableManagementRestService")

@Transactional

public class TableManagementRestServiceImpl implements RestService {

 // ...

 @Produces(MediaType.APPLICATION_JSON)

 @GET

 @Path("/table/{id}/")

 @RolesAllowed(PermissionConstant.GET_TABLES)

 public TableBo getTable(@PathParam("id") String id) throws RestServiceException {

 Long idAsLong;

 if (id == null)

 throw new BadRequestException("missing id");

 try {

 idAsLong = Long.parseLong(id);

 } catch (NumberFormatException e) {

 throw new RestServiceException("id is not a number");

 } catch (NotFoundException e) {

 throw new RestServiceException("table not found");

 }

 return this.tableManagement.getTable(idAsLong);

 }

 // ...

}

Here we can see a REST service for the business component tablemanagement. The method getTable
can be accessed via HTTP GET (see @GET) under the URL path tablemanagement/table/{id} (see
@Path annotations) where {id} is the ID of the requested table and will be extracted from the URL
and provided as parameter id to the method getTable. It will return its result (TableBo) as JSON (see
@Produces). As you can see it delegates to the logic component tableManagement that contains the
actual business logic while the service itself only contains mapping code and general input validation.
Further you can see the @Transactional annotation for transaction handling and @RolesAllowed for
security. The REST service implementation is a regular CDI bean that can use dependency injection.

Note

With JAX-RS it is important to make sure that each service method is annotated with the proper
HTTP method (@GET,@POST,etc.) to avoid unnecessary debugging. So you should take care
not to forget to specify one of these annotations.

https://jax-rs-spec.java.net/
http://cxf.apache.org/
http://wiki.fasterxml.com/JacksonHome
http://www.oracle.com/technetwork/articles/javase/index-140168.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 15

JAX-RS Configuration

All your services have to be declared in the beans-service.xml file. For the example this would look as
following:

 <jaxrs:server id="CxfRestServices" address="/rest">

 <!-- ... -->

 <jaxrs:serviceBeans>

 <ref bean="TableManagementRestService"/>

 <!-- ... -->

 </jaxrs:serviceBeans>

 </jaxrs:server>

Here TableManagementRestService is the identifier used in the @Named annotation of the REST
service implementation (see example above).

HTTP Status Codes

Further we define how to use the HTTP status codes for REST services properly. In general the 4xx
codes correspond to an error on the client side and the 5xx codes to an error on the server side.

Table 3.3. Usage of HTTP status codes

HTTP Code Meaning Response Comment

200 OK requested result Result of successful
GET

204 No Content none Result of successful
POST, DELETE, or
PUT (void return)

400 Bad Request error details The HTTP request is
invalid (parse error,
validation failed)

401 Unauthorized none (security) Authentication failed

403 Forbidden none (security) Authorization failed

404 Not found none Either the service
URL is wrong or the
requested resource
does not exist

500 Server Error error code, UUID Internal server error
occurred (used for all
technical exceptions)

For more details about REST service design please consult the RESTful cookbook.

REST Exception Handling

For exceptions a service needs to have an exception facade that catches all exceptions and handles
them by writing proper log messages and mapping them to a HTTP response with an according HTTP
status code. Therefore the OASP provides a generic solution via RestServiceExceptionFacade. You
need to follow the exception guide so that it works out of the box because the facade needs to be

http://restcookbook.com/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 16

able to distinguish between business and technical exceptions. You need to configure it in your beans-
service.xml as following:

 <jaxrs:server id="CxfRestServices" address="/rest">

 <jaxrs:providers>

 <bean class="io.oasp.module.rest.service.impl.RestServiceExceptionFacade"/>

 <!-- ... -->

 </jaxrs:providers>

 <!-- ... -->

 </jaxrs:server>

Now your service may throw exceptions but the facade with automatically handle them for you.

REST Media Types

The payload of a REST service can be in any format as REST by itself does not specify this.
The most established ones that the OASP recommends are XML and JSON. Follow these links for
further details and guidance how to use them properly. JAX-RS and CXF properly support these
formats (MediaType.APPLICATION_JSON and MediaType.APPLICATION_XML can be specified for
@Produces or @Consumes). Try to decide for a single format for all services if possible and NEVER
mix different formats in a service.

In order to use JSON via Jackson with CXF you need to register the factory in your beans-service.xml
and make CXF use it as following:

 <jaxrs:server id="CxfRestServices" address="/rest">

 <jaxrs:providers>

 <bean class="org.codehaus.jackson.jaxrs.JacksonJsonProvider">

 <property name="mapper">

 <ref bean="ObjectMapperFactory"/>

 </property>

 </bean>

 <!-- ... -->

 </jaxrs:providers>

 <!-- ... -->

 </jaxrs:server>

 <bean id="ObjectMapperFactory" factory-bean="RestaurantObjectMapperFactory" factory-

method="createInstance"/>

REST Testing

For testing REST services in general consult the testing guide.

For manual testing REST services there are browser plugins:

• Firefox: httprequester (or poster)

• Chrome: postman (advanced-rest-client)

3.2.4.3 HTTP-Invoker

HTTP-Invoker is a very simple and easy to use communication protocol that is part of spring remoting.
It simply sends the serialized method call with all its arguments and sends the data via HTTP(S).

3.2.5 Service Considerations

The term service is quite generic and therefore easily misunderstood. It is a unit exposing coherent
functionality via a well-defined interface over a network. For the design of a service we consider the
following aspects:

https://addons.mozilla.org/en-US/firefox/addon/httprequester/
https://addons.mozilla.org/en-US/firefox/addon/poster/
http://www.getpostman.com/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
http://docs.spring.io/spring-integration/docs/2.0.x/reference/html/httpinvoker.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 17

• self-contained
The entire API of the service shall be self-contained and have no dependencies on other parts of the
application (other services, implementations, etc.).

• idem-potent
E.g. creation of the same master-data entity has no effect (no error)

• loosely coupled
Service consumers have minimum knowledge and dependencies on the service provider.

• normalized
complete, no redundancy, minimal

• coarse-grained
Service provides rather large operations (save entire entity or set of entities rather than individual
attributes)

• atomic
Process individual entities (for processing large sets of data use a batch instead of a service)

• simplicity
avoid polymorphism, RPC methods with unique name per signature and no overloading, avoid
attachments (consider separate download service), etc.

3.2.6 Security

A common security threat is CSRF for REST services. Therefore all REST operations that are performing
modifications (PUT, POST, DELETE, etc. - all except GET) have to be secured against CSRF attacks.
In OASP4J we are using spring-security that already solves CSRF token generation and verification.
The integration is part of the application template as well as the sample-application.

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 18

3.3 Logic Layer

The logic layer is the heart of the application and contains the main business logic. According to our
business architecture we divide an application into business components. The component part assigned
to the logic layer contains the functional use-cases the business component is responsible for. For
further understanding consult the application architecture.

3.3.1 Use Case

For each general business operation we create a use case. In the code we use the prefix Uc for all
use cases.

First we create an interface Uc<MyUseCase> that contains the method(s) with the business operation
documented with JavaDoc. The API of the use cases has to be business oriented. This means that
all parameters and return types of a use case method have to be business transfer-objects, datatypes
(String, Integer, MyCustomerNumber, etc.), or collections of these. The API may not access objects from
other business components not in the (transitive) dependencies of the declaring business component.
Here is an example of a use case interface:

public interface UcFindStaffMember {

 StaffMemberEto getStaffMemberByLogin(String login);

 StaffMemberEto getStaffMember(Long id);

}

The implementation of the use case is named Uc<MyUseCase>Impl. It typically needs access to the
persistent data. This is done by injecting the corresponding DAO. For the principle data sovereignty only
DAOs of the same business component may be accessed directly from the use case. For accessing
data from other components the use case has to use the corresponding component interface. Further it
shall not expose persistent entities from the persistence layer and has to map them to transfer objects.

Within the different Use Cases entities are mapped via a BeanMapper to persistent entities. Let’s take
a quick look at the Use Case FindStaffMember:

package io.oasp.gastronomy.restaurant.staffmanagement.logic.impl;

public class UcFindStaffMemberImpl extends AbstractStaffMemberUc implements UcFindStaffMember {

 public StaffMemberEto getStaffMemberByLogin(String login) {

 StaffMemberEntity staffMember = getStaffMemberDao().searchByLogin(login);

 return getBeanMapper().map(staffMember, StaffMemberEto.class);

 }

 public StaffMemberEto getStaffMember(Login id) {

 StaffMemberEntity staffMember = getStaffMemberDao().find(id);

 return getBeanMapper().map(staffMember, StaffMemberEto.class);

 }

}

As you can see, provided entities are mapped to corresponding business objects (here
StaffMemberEto.class). These business objects are simple POJOs (Plain Old Java Objects) and stored
in:
<package-name-prefix>.<domain>.<application-name>.<component>.api.
The mapping process of these entities and the declaration of the AbstractLayerImpl class are described
here. For every business object there has to be a mapping entry in the src/main/resources/config/app/
common/dozer-mapping.xml file. For example, the mapping entry of a TableEto to a Table looks like this:

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 19

 <mapping>

 <class-a>io.oasp.gastronomy.restaurant.tablemanagement.logic.api.TableEto</class-a>

 <class-b>io.oasp.gastronomy.restaurant.tablemanagement.persistence.api.entity.Table</class-b>

 </mapping>

Testing the component (interface) can be done in the same way that the DAOs are tested, see here
how this is done.

3.3.2 Component Interface

A component may consist of several Use Cases but is only accessed by the next higher layer or other
components through one interface, i.e. by using one Spring bean. The task of this bean is to delegate the
invocations to the respective Use Cases. The only exception is, that for the basic data sub applications,
the DAOs are accessed directly.

The following listing shows how to implement the component interface for staffmanagement:

package io.oasp.gastronomy.restaurant.staffmanagement.logic.impl;

public class StaffManagementImpl extends AbstractLayerImpl implements StaffManagement {

 private UcFindStaffMember ucFindStaffMember;

 private UcManageStaffMember ucManageStaffMember;

 // ... The setter go here

 @Override

 public StaffMemberEto getStaffMember(String login) {

 return this.ucFindStaffMember.getStaffMember(login);

 }

 @Override

 public List<StaffMemberEto> getAllStaffMembers() {

 return this.ucFindStaffMember.getAllStaffMember();

 }

 @Override

 public void updateStaffMember(StaffMemberEto staffMember) throws ValidationException {

 this.ucManageStaffMember.updateStaffMember(staffMember);

 }

 @Override

 public void deleteStaffMember(String login) {

 this.ucManageStaffMember.deleteStaffMember(login);

 }

}

Similar to DAOs there is an interface for every component interface implementation in
the package of the component (e.g. io.oasp.gastronomy.restaurant.staffmanagement.logic.api or
io.oasp.gastronomy.restaurant.salesmanagement.logic.api), which contains all public methods. As
shown above, all entities, that pass that interface, are redirected to the corresponding Use Cases where
the actual mapping takes action.

3.3.2.1 Passing Parameters Among Components

Entities have to be detached for the reasons of data sovereignty, if entities are passed among
components or layers (to service layer). For further details see Bean-Mapping. Therefore we are using
transfer-objects (TO) with the same attributes as the entity that is persisted. The packages are:

Persistence Entities: <package-name-prefix>.<domain>.<application-

name>.<component>.persistence.api.entity

Transfer Objects(TOs): <package-name-prefix>.<domain>.<application-name>.<component>.logic.api

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 20

This mapping is a simple copy process. So changes out of the scope of the owning component to any
TO do not directly affect the persistent entity.

3.3.2.2 Use Case Example

The CRUD (Create, Read, Update, Delete) functionality is a basic Use Case that has to be implemented
for each component and usually for each entity managed by that component. This Use Case is split for
every entity in the component logical layer.

• UcFind<entity> provides methods for getting at least one entity from the database

• UcManage<entity> provides methods for managing the entity. At least, create-, update- and delete-
functionalities are provided by that class.

The Use Cases are structured in the logical layer and in the components as follows:

As the graphic above illustrates, the necessary DAO entity to access the database is provides by an
abstract class. Use Cases that need access to this DAO entity, have to extend that abstract class.
Needed dependencies (in this case the staffMemberDao) are resolved by Spring, see here. For the
validation (e.g. to check if all needed attributes of the StaffMember have been set) either Java code or
Drools, a business rule management system, can be used.

http://www.jboss.org/drools/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 21

3.4 Data-Access Layer

The data-access layer is responsible for all outgoing connections to access and process data. This is
mainly about accessing data from a persistent data-store but also about invoking external services.

3.4.1 Persistence

For mapping java objects to a relational database we use the Java Persistence API (JPA). As JPA
implementation we recommend to use hibernate. For general documentation about JPA and hibernate
follow the links above as we will not replicate the documentation. Here you will only find guidelines and
examples how we recommend to use it properly. The following examples show how to map the data
of a database to an entity.

3.4.1.1 Entity

Entities are part of the persistence layer and contain the actual data. They are POJOs (Plain Old Java
Objects) on which the relational data of a database is mapped and vice versa. The mapping is configured
via JPA annotations (javax.persistence). Usually an entity class corresponds to a table of a database
and a property to a row of that table.

A Simple Entity

The following listing shows a simple example:

@Entity

@Table(name="TEXTMESSAGE")

public class Message extends AbstractPersistenceEntity {

 private String text;

 public String getText() {

 return this.name;

 }

 public void setText(String text) {

 this.text = text;

 }

 }

The @Entity annotation defines that instances of this class will be entities which can be stored in the
database. The @Table annotation is optional and can be used to define the name of the corresponding
table in the database. If it is not specified, the simple name of the entity class is used instead.

In order to specify how to map the attributes to columns we annotate the corresponding getter methods
(technically also private field annotation is also possible but approaches can not be mixed). The @Id
annotation specifies that a property should be used as primary key. With the help of the @Column
annotation it is possible to define the name of the column that an attribute is mapped to as well as other
aspects such as nullable or unique. If no column name is specified, the name of the property is used
as default.

Note that every entity class needs a constructor with public or protected visibility that does not have any
arguments. Moreover, neither the class nor its getters and setters may be final.

Entities should be simple POJOs and not contain business logic.

Entities and Datatypes

Standard datatypes like Integer, BigDecimal, String, etc. are mapped automatically by JPA. Custom
datatypes are mapped as serialized BLOB by default what is typically undesired. In order to map atomic

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://hibernate.org/orm/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 22

custom datatypes (implementations of SimpleDatatype) we implement an AttributeConverter. Here is
a simple example:

@Converter(autoApply = true)

public class MoneyAttributeConverter implements AttributeConverter<Money, BigDecimal> {

 public BigDecimal convertToDatabaseColumn(Money attribute) {

 return attribute.getValue();

 }

 public Money convertToEntityAttribute(BigDecimal dbData) {

 return new Money(dbData);

 }

}

The annotation @Converter is detected by the JPA vendor if the annotated class is in the packages
to scan (see beans-jpa.xml). Further, autoApply = true implies that the converter is automatically used
for all properties of the handled datatype. Therefore all entities with properties of that datatype will
automatically be mapped properly (in our example Money is mapped as BigDecimal).

In case you have a composite datatype that you need to map to multiple columns the JPA does not
offer a real solution. As a workaround you can use a bean instead of a real datatype and declare
it as @Embeddable. If you are using hibernate you can implement CompositeUserType. Via the
@TypeDef annotation it can be registered to hibernate. If you want to annotate the CompositeUserType
implementation itself you also need another annoation (e.g. MappedSuperclass tough not technically
correct) so it is found by the scan.

Enumerations

By default JPA maps Enums via their ordinal. Therefore the database will only contain the ordinals (0, 1,
2, etc.) so inside the database you can not easily understand their meaning. Using @Enumerated with
EnumType.STRING allows to map the enum values to their name (Enum.name()). Both approaches are
fragile when it comes to code changes and refactorings (if you change the order of the enum values or
rename them) after being in production with your application. If you want to avoid this and get a robust
mapping you can define a dedicated string in each enum value for database representation that you
keep untouched. Then you treat the enum just like any other custom datatype.

BLOB

If binary or character large objects (BLOB/CLOB) should be used to store the value of an attribute, e.g.
to store an icon, the @Lob annotation should be used as shown in the following listing:

@Lob

public byte[] getIcon() {

 return this.icon;

}

Warning

Using a byte array will cause problems if BLOBs get large because the entire BLOB is loaded into
the RAM of the server and has to be processed by the garbage collector. For larger BLOBs the
type Blob and streaming should be used.

public Blob getAttachment() {

 return this.attachment;

}

http://docs.oracle.com/javase/6/docs/api/java/sql/Blob.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 23

Date and Time

To store date and time related values, the temporal annotation can be used as shown in the listing below:

@Temporal(TemporalType.TIMESTAMP)

public java.util.Date getStart() {

 return start;

}

Until Java8 the java data type java.util.Date (or Jodatime) has to be used. TemporalType defines
the granularity. In this case, a precision of nanoseconds is used. If this granularity is not wanted,
TemporalType.DATE can be used instead, which only has a granularity of milliseconds. Mixing these
two granularities can cause problems when comparing one value to another. This is why we only use
TemporalType.TIMESTAMP.

Primary Keys

We only use simple Long values as primary keys (IDs). By default it is auto generated
(@GeneratedValue(strategy=GenerationType.AUTO)). This is already provided by the class
io.oasp.module.jpa.persistence.api.AbstractPersistenceEntity that you can extend. In case you have
business oriented keys (often as String), you can define an additional property for it and declare it as
unique (@Column(unique=true)).

3.4.1.2 Data Access Object

Data Acccess Objects (DAOs) are part of the persistence layer. They are responsible for a specific entity
and should be named <Entity>Dao[Impl]. The DAO offers the so called CRUD-functionalities (create,
retrieve, update, delete) for the corresponding entity. Additionally a DAO may offer advanced operations
such as query or locking methods.

DAO Interface

For each DAO there is an interface named <Entity>Dao that defines the API. For CRUD support and
common naming we derive it from the interface io.oasp.module.jpa.persistence.api.Dao:

public interface MyEntityDao extends Dao<MyEntity> {

 List<MyEntity> findByCriteria(MyEntitySearchCriteria criteria);

}

As you can see, the interface Dao has a type parameter for the entity class. All CRUD operations are
only inherited so you only have to declare the additional methods.

DAO Implementation

Implementing a DAO is quite simple. We crate a class named <Entity>DaoImpl that extends
io.oasp.module.jpa.persistence.base.AbstractDao and implements your <Entity>Dao interface:

public class MyEntityDaoImpl extends AbstractDao<MyEntity> implements MyEntityDao {

 public List<MyEntity> findByCriteria(MyEntitySearchCriteria criteria) {

 TypedQuery<MyEntity> query = createQuery(criteria, getEntityManager());

 return query.getResultList();

 }

 ...

}

As you can see AbstractDao already implements the CRUD operations so you only have to implement
the additional methods that you have declared in your <Entity>Dao interface. In the DAO implementation

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 24

you can use the method getEntityManager() to access the EntityManager from the JPA. You will need
the EntityManager to create and execute queries.

3.4.1.3 Queries

The Java Persistence API (JPA) defines its own query language, the java persistence query language
(JPQL), which is similar to SQL but operates on entities and their attributes instead of tables and
columns.

Static Queries

The OASP4J advises to specify all queries in one mapping file called NamedQueries.xml.

Add the following query to this file:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings version="1.0" xmlns="http://java.sun.com/xml/ns/persistence/orm" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/

orm_1_0.xsd">

 <named-query name="get.open.order.positions.for.order">

 <query><![CDATA[SELECT op FROM OrderPosition op where op.order.id = ? AND op.state NOT IN (PAYED,

 CANCELLED)]]></query>

 </named-query>

 ...

</hibernate-mapping>

To avoid redundant occurrences of the query name (get.open.order.positions.for.order) we define the
constants for each named query:

package io.oasp.gastronomy.restaurant.general.common.api.constants;

public class NamedQueries {

 public static final String GET_OPEN_ORDER_POSITION_FOR_ORDER = "get.open.order.positions.for.order";

}

Note that changing the name of the java constant (GET_OPEN_ORDER_POSITION_FOR_ORDER)
can be done easily with refactoring. Further you can trace where the query is used by searching the
references of the constant.

The following listing shows how to use this query (in class StaffMemberDaoImpl, remember to adapt
StaffMemberDao!):

public List<StaffMember> getStaffMemberByName(String firstName, String lastName) {

 Query query = getEntityManager().createNamedQuery(NamedQueries.STAFFMEMBER_SEARCH_BY_NAME);

 query.setParameter("firstName", firstName);

 query.setParameter("lastName", lastName);

 return query.getResultList();

}

The EntityManager contains a method called createNamedQuery(String), which takes as parameter the
name of the query and creates a new query object. As the query has two parameters, these have to be
set using the setParameter(String, Object) method.
Note that using the createQuery(String) method, which takes as parameter the query as string (this
string already contains the parameters) is not allowed as this makes the application vulnerable to SQL
injection attacks.
When the method getResultList() is invoked, the query is executed and the result is delivered as list. As
an alternative, there is a method called getSingleResult(), which returns the entity if the query returned
exactly one and throws an exception otherwise.

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 25

Using Queries to Avoid Bidirectional Relationships

With the usage of queries it is possible to avoid bidirectional relationships, which have some
disadvantages (see relationships). So for example to get all WorkingTime's for a specific StaffMember
without having an attribute in the StaffMember's class that stores these WorkingTime's, the following
query is needed:

<query name="working.time.search.by.staff.member">

 <![CDATA[select work from WorkingTime work where work.staffMember = :staffMember]]>

</query>

The method looks as follows (extract of class WorkingTimeDaoImpl):

public List<WorkingTime> getWorkingTimesForStaffMember(StaffMember staffMember) {

 Query query = getEntityManager().createNamedQuery(NamedQueries.WORKING_TIMES_SEARCH_BY_STAFFMEMBER);

 query.setParameter("staffMember", staffMember);

 return query.getResultList();

}

Do not forget to adapt the WorkingTimeDao interface and the NamedQueries class accordingly.

To get a more detailed description of how to create queries using JPQL, please have a look here or here.

Dynamic Queries

For dynamic queries we recommend to use QueryDSL. It allows to implement queries in a powerful but
readable and type-safe way (unlike Criteria API). If you already know JPQL you will quickly be able to
read and write QueryDSL code. It feels like JPQL but implemented in Java instead of plain text.

Please be aware that code-generation can be painful especially with large teams. We therefore
recommend to use QueryDSL without code-generation. Here is an example from our sample application:

 public List<OrderEntity> findOrders(OrderSearchCriteriaTo criteria) {

 OrderEntity order = Alias.alias(OrderEntity.class);

 EntityPathBase<OrderEntity> alias = Alias.$(order);

 JPAQuery query = new JPAQuery(getEntityManager()).from(alias);

 Long tableId = criteria.getTableId();

 if (tableId != null) {

 query.where(Alias.$(order.getTableId()).eq(tableId));

 }

 OrderState state = criteria.getState();

 if (state != null) {

 query.where(Alias.$(order.getState()).eq(state));

 }

 applyCriteria(criteria, query);

 return query.list(alias);

 }

Using Wildcards

For flexible queries it is often required to allow wildcards (especially in dynamic queries). While users
intuitively expect glob syntax the SQL and JPQL standards work different. Therefore a mapping is
required (see here).

Query Meta-Parameters and Paging

A query allows to set some meta-parameters such as maxResults, firstResult (offset), or
timeout. The OASP provides the method applyCriteria in AbstractGenericDao that applies meta-
parameters to a query based on AbstractSearchCriteria. So all you need to do is derive your

http://docs.oracle.com/javaee/5/tutorial/doc/bnbtg.html
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/persistence/api/jpql/JpqlSyntax.html#JPQL_STATEMENT
http://www.querydsl.com/
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/persistence/api/jpql/JpqlSyntax.html#PATTERN_VALUE

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 26

individual search criteria object from AbstractSearchCriteria and you can use applyCriteria in
the query implementation of your DAO. Then the query allows paging by setting maxResults
(AbstractSearchCriteria.setMaximumHitCount(Integer)) to the number of hits per page (plus
one extra hit to determine if there are more hits available) and increasing the firstResult
(AbstractSearchCriteria.setHitOffset(int)) by the number of hits per page to step to the next page. If you
allow the client to specify maxResults it is recommended to limit this value on the server side to prevent
performance problems or DOS-attacks.

3.4.1.4 Relationships

n:1 and 1:1 Relationships

Entities often do not exist independently but are in some relation to each other. For example, for every
period of time one of the StaffMember’s of the restaurant example has worked, which is represented by
the class WorkingTime, there is a relationship to this StaffMember.

The following listing shows how this can be modeled using JPA:

...

@Entity

public class WorkingTime {

 ...

 private StaffMember staffMember;

 @ManyToOne

 @JoinColumn(name="STAFFMEMBER")

 public StaffMember getStaffMember() {

 return staffMember;

 }

 public void setStaffMember(StaffMember staffMember) {

 this.staffMember = staffMember;

 }

}

To represent the relationship, an attribute of the type of the corresponding entity class that is referenced
has been introduced. The relationship is a n:1 relationship, because every WorkingTime belongs to
exactly one StaffMember, but a StaffMember usually worked more often than once.
This is why the @ManyToOne annotation is used here. For 1:1 relationships the @OneToOne
annotation can be used which works basically the same way. To be able to save information about
the relation in the database, an additional column in the corresponding table of WorkingTime is
needed which contains the primary key of the referenced StaffMember. With the name element of the
@JoinColumn annotation it is possible to specify the name of this column.

1:n and n:m Relationships

The relationship of the example listed above is currently an unidirectional one, as there is a getter
method for retrieving the StaffMember from the WorkingTime object, but not vice versa.

To make it a bidirectional one, the following code has to be added to StaffMember:

 private Set<WorkingTimes> workingTimes;

 @OneToMany(mappedBy="staffMember")

 public Set<WorkingTime> getWorkingTimes() {

 return workingTimes;

 }

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 27

 public void setWorkingTimes(Set<WorkingTime> workingTimes) {

 this.workingTimes = workingTimes;

 }

To make the relationship bidirectional, the tables in the database do not have to be changed. Instead the
column that corresponds to the attribute staffMember in class WorkingTime is used, which is specified
by the mappedBy element of the @OneToMany annotation. Hibernate will search for corresponding
WorkingTime objects automatically when a StaffMember is loaded.

The problem with bidirectional relationships is that if a WorkingTime object is added to the set or list
workingTimes in StaffMember, this does not have any effect in the database unless the staffMember
attribute of that WorkingTime object is set. That is why the OASP4J advices not to use bidirectional
relationships but to use queries instead. How to do this is shown here. If a bidirectional relationship
should be used nevertheless, approriate add and remove methods must be used.

For 1:n and n:m relations, the OASP4J demands that (unordered) Sets and no other collection types
are used, as shown in the listing above. The only exception is whenever an ordering is really needed,
(sorted) lists can be used.
For example, if WorkingTime objects should be sorted by their start time, this could be done like this:

 private List<WorkingTimes> workingTimes;

 @OneToMany(mappedBy = "staffMember")

 @OrderBy("startTime asc")

 public List<WorkingTime> getWorkingTimes() {

 return workingTimes;

 }

 public void setWorkingTimes(List<WorkingTime> workingTimes) {

 this.workingTimes = workingTimes;

 }

The value of the @OrderBy annotation consists of an attribute name of the class followed by asc
(ascending) or desc (descending).

To store information about a n:m relationship, a separate table has to be used, as one column cannot
store several values (at least if the database schema is in first normal form).
For example if one wanted to extend the example application so that all ingredients of one FoodDrink
can be saved and to model the ingredients themselves as entities (e.g. to store additional information
about them), this could be modeled as follows (extract of class FoodDrink):

 private Set<Order> ingredients;

 @ManyToMany

 @JoinTable

 public Set<Ingredient> getIngredients() {

 return ingredients;

 }

 public void setOrders(Set<Ingredient> ingredients) {

 this.ingredients = ingredients;

 }

Information about the relation is stored in a table called BILL_ORDER that has to have two columns, one
for referencing the Bill, the other one for referencing the Order. Note that the @JoinTable annotation is
not needed in this case because a separate table is the default solution here (same for n:m relations)
unless there is a mappedBy element specified.

For 1:n relationships this solution has the disadvantage that more joins (in the database system) are
needed to get a Bill with all the Order’s it refers to. This might have a negative impact on performance

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 28

so that the solution to store a reference to the Bill row/entity in the Order’s table is probably the better
solution in most cases.

Note that bidirectional n:m relationships are not allowed for applications based on the OASP4J. Instead
a third entity has to be introduced, which "represents" the relationship (it has two n:1 relationships).

Eager vs. Lazy Loading

Using JPA/Hibernate it is possible to use either lazy or eager loading. Eager loading means that
for entities retrieved from the database, other entities that are referenced by these entities are also
retrieved, whereas lazy loading means that this is only done when they are actually needed, i.e. when
the corresponding getter method is invoked.

Application based on the OASP4J must use lazy loading per default. Projects generated with the
project generator are already configured so that this is actually the case (this is done in the file
NamedQueries.hbm.xml).

For some entities it might be beneficial if eager loading is used. For example if every time a Bill is
processed, the Order entities it refers to are needed, eager loading can be used as shown in the following
listing:

 @OneToMany(fetch = FetchType.EAGER)

 @JoinTable

 public Set<Order> getOrders() {

 return orders;

 }

This can be done with all four types of relationships (annotations: @OneToOne, @ManyToOne,
@OneToMany, @ManyToOne).

Cascading Relationships

It is not only possible to specify what happens if an entity is loaded that has some relationship to other
entities (see above), but also if an entity is for example persisted or deleted. By default, nothing is done
in these situations.
This can be changed by using the cascade element of the annotation that specifies the relation
type (@OneToOne, @ManyToOne, @OneToMany, @ManyToOne). For example, if a StaffMember is
persisted, all its WorkingTime's should be persisted and if the same applies for deletions (and some
other situations, for example if an entity is reloaded from the database, which can be done using the
refresh(Object) method of an EntityManager), this can be realized as shown in the following listing
(extract of the StaffMember class):

 @OneToMany(mappedBy = "staffMember", cascade=CascadeType.ALL)

 public Set<WorkingTime> getWorkingTime() {

 return workingTime;

 }

There are several CascadeTypes, e.g. to specify that a "cascading behavior" should only be used if an
entity is persisted (CascadeType.PERSIST) or deleted (CascadeType.REMOVE), see here for more
information.

3.4.1.5 Embeddable

An embeddable Object is a way to implement relationships between entities, but with a mapping in which
both entities are in the same database table. If these entities are often needed together, this is a good
way to speed up database operations, as only one access to a table is needed to retrieve both entities.

http://meri-stuff.blogspot.de/2012/03/jpa-tutorial.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 29

Suppose the restaurant example application has to be extended in a way that it is possible to store
information about the addresses of StaffMember's, this can be done with a new Address class:

...

@Embeddable

public class Address {

 private String street;

 private String number;

 private Integer zipCode;

 private String city;

 @Column(name="STREETNUMBER")

 public String getNumber() {

 return number;

 }

 public void setNumber(String number) {

 this.number = number;

 }

 ... // other getter and setter methods, equals, hashCode

}

This class looks a bit like an entity class, apart from the fact that the @Embeddable annotation is used
instead of the @Entity annotation and no primary key is needed here. In addition to that the methods
equals(Object) and hashCode() need to be implemented as this is required by Hibernate (it is not
required for entities because they can be unambiguously identified by their primary key). For some hints
on how to implement the hashCode() method please have a look here.

Using the address in the StaffMember entity class can be done as shown in the following listing:

...

@Entity

public class StaffMember implements StaffMemberRo {

 ...

 private Address address;

 ...

 @Embedded

 public Address getAddress() {

 return address;

 }

 public void setAddress(Address address) {

 this.address = address;

 }

}

The @Embedded annotation needs to be used for embedded attributes. Note that if in all columns in the
StaffMember's table that belong to the Address embeddable there are null values, the Address is null
when retrieving the StaffMember entity from the database. This has to be considered when implementing
the application core to avoid NullPointerException’s.

Moreover, if the database tables are created automatically by Hibernate and a primitive data type is
used in the embeddable (in the example this would be the case if int is used instead of Integer as
data type for the zipCode), there will be a not null constraint on the corresponding column (reason: a
primitive data type can never be null in java, so hibernate always introduces a not null constraint). This

http://stackoverflow.com/questions/113511/hash-code-implementation

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 30

constraint would be violated if one tries to insert a StaffMember without an Address object (this might
be considered as a bug in Hibernate).

Another way to realize the one table mapping are Hibernate UserType’s, as described here.

3.4.1.6 Inheritance

Just like normal java classes, entity classes can inherit from others. The only difference is that you need
to specify how to map a subtype hierarchy to database tables.

The Java Persistence API (JPA) offers three ways how to do this:

• One table per hierarchy. This table contains all columns needed to store all types of entities in the
hierarchy. If a column is not needed for an entity because of its type, there is a null value in this
column. An additional column is introduced, which denotes the type of the entity (called "dtype" which
is of type varchar and stores the class name).

• One table per subclass. For each concrete entity class there is a table in the database that can store
such an entity with all its attributes. An entity is only saved in the table corresponding to its most
concrete type. To get all entities of a type that has subtypes, joins are needed.

• One table per subclass: joined subclasses. In this case there is a table for every entity class (this
includes abstract classes), which contains all columns needed to store an entity of that class apart
from those that are already included in the table of the supertype. Additionally there is a primary key
column in every table. To get an entity of a class that is a subclass of another one, joins are needed.

Every of the three approaches has its advantages and drawbacks, which are discussed in detail here.
In most cases, the first one should be used, because it is usually the fastest way to do the mapping,
as no joins are needed when retrieving entities and persisting a new entity or updating one only affects
one table. Moreover it is rather simple and easy to understand.
One major disadvantage is that the first approach could lead to a table with a lot of null values, which
might have a negative impact on the database size.

The following listings show how to realize a class hierarchy among entity classes for the class FoodDrink
and its subclass Drink:

...

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

public abstract class FoodDrink {

 private long id;

 private String description;

 private byte[] picture;

 private long version;

 @Id

 @Column(name = "ID")

 @GeneratedValue(generator = "SEQ_GEN")

 @SequenceGenerator(name = "SEQ_GEN", sequenceName = "SEQ_FOODDRINK")

 public long getId() {

 return this.id;

 }

 public void setId(long id) {

 this.id = id;

http://tedyoung.me/2012/02/07/custom-user-types-with-jpa-and-spring/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://openjpa.apache.org/builds/1.0.4/apache-openjpa-1.0.4/docs/manual/jpa_overview_mapping_inher.html#jpa_overview_mapping_inher_tpc

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 31

 }

 ...

}

...

@Entity

public class Drink extends FoodDrink {

 private boolean alcoholic;

 public boolean isAlcoholic() {

 return alcoholic;

 }

 public void setAlcoholic(boolean alcoholic) {

 this.alcoholic = alcoholic;

 }

}

To specify how to map the class hierarchy, the @Inheritance annotation is used. Its
element strategy defines which type of mapping is used and can have the following values:
InheritanceType.SINGLE_TABLE (= one table per hierarchy), InheritanceType.TABLE_PER_CLASS
(= one table per subclass) and InheritanceType.JOINED (= one table per subclass, joined tables).

As a best practice we advise you to avoid deep class hierarchies among entity classes (unless they
reduce complexity).

3.4.1.7 Concurrency Control

The concurrency control defines the way concurrent access to the same data of a database is handled.
When several users (or threads of application servers) concurrently accessing a database, anomalies
may happen, e.g. a transaction is able to see changes from another transaction although that one did
not jet commit these changes. Most of these anomalies are automatically prevented by the database
system, depending on the isolation level (property hibernate.connection.isolation in the jpa.xml, see
here).

A remaining anomaly is when two stakeholders concurrently access a record, do some changes and
write them back to the database. The JPA addresses this with different locking strategies (see here
or here).

As a best practice we are using optimistic locking for regular end-user services (OLTP) and pessimistic
locking for batches.

Optimistic Locking

The class io.oasp.module.jpa.persistence.api.AbstractPersistenceEntity already provides optimistic
locking via a modificationCounter with the @Version annotation. Therefore JPA takes care of optimistic
locking for you. When entities are transferred to clients, modified and sent back for update you need to
ensure the modificationCounter is part of the game. If you follow our guides about transfer-objects and
services this will also work out of the box. You only have to care about two things:

• How to deal with optimistic locking in relationships?
Assume an entity A contains a collection of B entities. Should there be a locking conflict
if one user modifies an instance of A while another user in parallel modifies an instance
of B that is contained in the other instance? To take influence besides placing collections
take a look at oasp.github.io/oasp4j/1.1.0/maven/apidocs/io/oasp/module/jpa/dataaccess/api/

http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configuration.html
http://www.objectdb.com/java/jpa/persistence/lock
https://weblogs.java.net/blog/2009/07/30/jpa-20-concurrency-and-locking

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 32

GenericDao.html#forceIncrementModificationCounter(E)
[GenericDao.forceIncrementModificationCounter].

• What should happen in the UI if an OptimisticLockException occurred?
According to KISS our recommendation is that the user gets an error displayed that tells him to do
his change again on the recent data. Try to design your system and the work processing in a way to
keep such conflicts rare and you are fine.

Pessimistic Locking

For back-end services and especially for batches optimistic locking is not suitable. A human user shall
not cause a large batch process to fail because he was editing the same entity. Therefore such use-
cases use pessimistic locking what gives them a kind of priority over the human users. In your DAO
implementation you can provide methods that do pessimistic locking via EntityManager operations that
take a LockModeType. Here is a simple example:

 getEntityManager().lock(entity, LockModeType.READ);

When using the lock(Object, LockModeType) method with LockModeType.READ, Hibernate will issue
a select ... for update. This means that no one else can update the entity (see here for more information
on the statement). If LockModeType.WRITE is specified, Hibernate issues a select ... for update nowait
instead, which has has the same meaning as the statement above, but if there is already a lock, the
program will not wait for this lock to be release. Instead, an exception is raised.
Use one of the types if you want to modify the entity later on, for read only access no lock is required.

As you might have noticed, the behavior of Hibernate deviates from what one would expect by looking
at the LockModeType (especially LockModeType.READ should not cause a select ... for update to be
issued). The framework actually deviates from what is specified in the JPA for unknown reasons.

3.4.1.8 Database Auditing

See auditing guide.

3.4.1.9 Testing Entities and DAOs

See testing guide.

3.4.1.10 Principles

We strongly recommend these principles:

• Use the JPA where ever possible and use vendor (hibernate) specific features only for situations
when JPA does not provide a solution. In the latter case consider first if you really need the feature.

• Create your entities as simple POJOs and use JPA to annotate the getters in order to define the
mapping.

• Keep your entities simple and avoid putting advanced logic into entity methods.

3.4.2 Database Configuration

The configuration for spring and hibernate is already provided by OASP in our sample application and
the application template. So you only need to worry about a few things to customize.

http://docs.oracle.com/javaee/6/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/6/api/javax/persistence/LockModeType.html
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm
http://docs.oracle.com/javaee/6/api/javax/persistence/LockModeType.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 33

3.4.2.1 Database System and Access

Obviously you need to configure why type of database you want to use as well as the location and
credentials to access it. The defaults are configured in application-default.properties that is bundled and
deployed with the release of the software. It should therefore contain the properties as in the given
example:

 database.url=jdbc:postgresql://database.enterprise.com/app

 database.user.login=appuser01

 database.hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

 database.hibernate.hbm2ddl.auto=validate

The environment specific settings (especially passwords) are configured by the operators in
application.properties. For further details consult the configuration guide. It can also override the default
values. The relevant configuration properties can be seen by the following example for the development
environment (located in src/test/resources):

 database.url=jdbc:postgresql://localhost/app

 database.user.password=************

 database.hibernate.hbm2ddl.auto=create

For further details about database.hibernate.hbm2ddl.auto please see here. For production and
acceptance environments we use the value validate that should be set as default.

3.4.2.2 Database Migration

See database migration guide.

3.4.3 Security

3.4.3.1 SQL-Injection

A common security threat is SQL-injection. Never build queries with string concatenation or your code
might be vulnerable as in the following example:

 String query = "Select op from OrderPosition op where op.comment = " + userInput;

 return getEntityManager().createQuery(query).getResultList();

Via the parameteter userInput an attacker can inject SQL (JPQL) and execute arbitrary statements in
the database causing extreme damage. In order to prevent such injections you have to strictly follow
our rules for queries: Use named queries for static queries and QueryDSL for dynamic queries. Please
also consult the SQL Injection Prevention Cheat Sheet.

3.4.3.2 Limited Permissions for Application

We suggest that you operate your application with a database user that has limited permissions so he
can not modify the SQL schema (e.g. drop tables). For initializing the schema (DDL) or to do schema
migrations use a separate user that is not used by the application itself.

https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/session-configuration.html#configuration-misc-properties
http://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 34

4. Guides

4.1 Logging

We use SLF4J as API for logging. The recommended implementation is Logback for which we provide
additional value such as configuration templates and an appender that prevents log-forging and
reformatting of stack-traces for operational optimizations.

4.1.1 Usage

4.1.1.1 Maven Integration

In the pom.xml of your application add this dependency (that also adds transitive dependencies to SLF4J
and logback):

<dependency>

 <groupId>io.oasp.java</groupId>

 <artifactId>oasp4j-logging</artifactId>

 <version>1.0.0</version>

</dependency>

4.1.1.2 Configuration

The configuration file is logback.xml and is to put in the directory src/main/resources of your main
application. For details consult the logback configuration manual. OASP4J provides a production ready
configuration here. Simply copy this configuration into your application in order to benefit from the
provided operational and aspects. We do not include the configuration into the oasp4j-logging module
to give you the freedom of customizations (e.g. tune log levels for components and integrated products
and libraries of your application).

4.1.1.3 Logger Access

The general pattern for accessing loggers from your code is a static logger instance per class. We pre-
configured the development environment so you can just type LOG and hit [ctrl][space] (and then [arrow
up]) to insert the code pattern line into your class:

public class MyClass {

 private static final Logger LOG = LoggerFactory.getLogger(MyClass.class);

 ...

}

4.1.1.4 How to log

We use a common understanding of the log-levels as illustrated by the following table. This helps for
better maintenance and operation of the systems by combining both views.

Table 4.1. Loglevels

Loglevel Description Impact Active Environments

FATAL Only used for fatal
errors that prevent the
application to work at
all (e.g. startup fails

Operator has to react
immediately

all

http://www.slf4j.org/
http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html
https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-server/src/main/resources/logback.xml

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 35

Loglevel Description Impact Active Environments

or shutdown/restart
required)

ERROR An abnormal error
indicating that the
processing failed due
to technical problems.

Operator should check
for known issue and
otherwise inform
development

all

WARNING A situation where
something worked not
as expected. E.g. a
business exception or
user validation failure
occurred.

No direct reaction
required. Used for
problem analysis.

all

INFO Important information
such as context,
duration, success/
failure of request or
process

No direct reaction
required. Used for
analysis.

all

DEBUG Development
information that
provides additional
context for debugging
problems.

No direct reaction
required. Used for
analysis.

development and
testing

TRACE Like DEBUG but
exhaustive information
and for code that is run
very frequently. Will
typically cause large
log-files.

No direct reaction
required. Used for
problem analysis.

none (turned off by
default)

Exceptions (with their stacktrace) should only be logged on FATAL or ERROR level. For business
exceptions typically a WARNING including the message of the exception is sufficient.

4.1.2 Operations

4.1.2.1 Log Files

We always use the following log files:

• Error Log: Includes log entries to detect errors.

• Info Log: Used to analyze system status and to detect bottlenecks.

• Debug Log: Detailed information for error detection.

The log file name pattern is as follows:

<LOGTYPE>_log_<HOST>_<APPLICATION>_<TIMESTAMP>.log

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 36

Table 4.2. Segments of Logfilename

Element Value Description

<LOGTYPE> info, error, debug Type of log file

<HOST> e.g. mywebserver01 Name of server, where logs are
generated

<APPLICATION> e.g. myapp Name of application, which
causes logs

<TIMESTAMP> YYYY-MM-DD_HH00 date of log file

Example: error_log_mywebserver01_myapp_2013-09-16_0900.log

Error log from mywebserver01 at application myapp at 16th September 2013 9pm.

4.1.2.2 Output format

We use the following output format for all log entries to ensure that searching and filtering of log entries
work consistent for all logfiles:

 [D: <timestamp>] [P: <priority (Level)>] [C: <NDC>][T: <thread>][L: <logger name>]-[M: <message>]

• D: Date (ISO8601: 2013-09-05 16:40:36,464)

• P: Priority (the log level)

• C: Correlation ID (ID to identify users across multiple systems, needed when application is distributed)

• T: Thread (Name of thread)

• L: Logger name (use class name)

• M: Message (log message)

Example:

 [D: 2013-09-05 16:40:36,464] [P: DEBUG] [C: 12345] [T: main] [L: my.package.MyClass]-[M: My message...]

4.1.3 Security

In order to prevent log forging attacks we provide a special appender for logback in oasp4j-logging. If
you use it (see) you are safe from such attacks.

https://www.owasp.org/index.php/Log_Forging
https://github.com/oasp/oasp4j/tree/oasp4j-logging

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 37

4.2 Security

Security is todays most important cross-cutting concern of an application and an enterprise IT-
landscape. We seriously care about security and give you detailed guides to prevent pitfalls,
vulnerabilities, and other disasters. While many mistakes can be avoided by following our guidelines
you still have to consider security and think about it in your design and implementation. The security
guides provided by this document will not automatically prevent you from any harm, but they may give
you hints and best practices already used in different software products.

4.2.1 Authentication

Definition:

Authentication is the verification that somebody interacting with the system is the actual
subject for whom he claims to be.

The one authenticated is properly called subject or principal. However, for simplicity we use the common
term user even though it may not be a human (e.g. in case of a service call from an external system).

To prove his authenticity the user provides some secret called credentials. The most simple form of
credentials is a password.

Note

Please never implement your own authentication mechanism or credential store. You have to
be aware of implicit demands such as salting and hashing credentials, password life-cycle with
recovery, expiry, and renewal including email notification confirmation tokens, central password
policies, etc. This is the domain of access managers and identity management systems. In a
business context you will typically already find a system for this purpose that you have to integrate
(e.g. via LDAP).

oasp4j uses Spring Security as a framework for authentication purposes.
Therefore you need to define an authentication provider implementing the
org.springframework.security.authentication.AuthenticationProvider interface
from Spring Security. The implemented authentication provider can be registered as main authentication
provider using the authentication-manager declaration.

<beans:beans xmlns="http://www.springframework.org/schema/security" xmlns:beans="http://

www.springframework.org/schema/beans">

 <beans:bean id="restaurantAuthenticationProvider"

 class="io.oasp.gastronomy.restaurant.general.common.api.security.ServletAuthenticationProvider"/>

 <authentication-manager alias="restaurantAuthenticationManager" erase-credentials="false">

 <authentication-provider ref="restaurantAuthenticationProvider"/>

 </authentication-manager>

</beans:beans>

4.2.1.1 Mechanisms

Basic

Http-Basic authentication can be easily implemented with this configuration:

http://docs.oracle.com/javase/7/docs/api/java/security/Principal.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 38

<http auto-config="true" use-expressions="true">

 ...

 <http-basic/>

 ...

</http>

Form Login

For a form login the spring security implementation might look like this:

<http auto-config="false" use-expressions="true">

 ...

 <form-login login-page="/login" authentication-failure-url="/login?authentication_failed=1"

 login-processing-url="/j_spring_security_login" default-target-url="/services"/>

 <logout logout-url="/j_spring_security_logout" logout-success-url="/login?logout=1" invalidate-

session="true"/>

 <access-denied-handler error-page="/login?access_denied=1"/>

 ...

</http>

The interesting part is, that there is a login-processing-url, which should be adressed to handle the
internal spring security authentication and similarly there is a logout-url, which has to be called to logout
a user.

4.2.1.2 Preserve original request anchors after form login redirect

Spring Security will automatically redirect any unauthorized access to the defined login-page. After
sucuessful login, the user will be redirected to the original requested URL. The only pitfall is, that anchors
in the request URL will not be transmitted to server and thus cannot be restored after successful login.
Therefore the oasp4j-security module provides the RetainAnchorFilter, which is able to inject javascript
code to the source page and to the target page of any redirection. Using javascript this filter is able to
retrieve the requested anchors and store them into a cookie. Heading the target URL this cookie will
be used to restore the original anchors again.

To enable this mechanism you have to integrate the RetainAnchorFilter as follows: First, declare the
filter with

• storeUrlPattern: an regular expression matching the URL, where anchors should be stored

• restoreUrlPattern: an regular expression matching the URL, where anchors should be restored

• cookieName: the name of the cookie to save the anchors in the intermediate time

<beans:bean id="retainAnchorFilter" class="io.oasp.module.security.common.web.api.RetainAnchorFilter">

 <!-- first [^/]+ part describes host name and possibly port, second [^/]+ is the application name --

>

 <beans:property name="storeUrlPattern" value="http://[^/]+/[^/]+/login.*"/>

 <beans:property name="restoreUrlPattern" value="http://[^/]+/[^/]+/.*"/>

 <beans:property name="cookieName" value="TARGETANCHOR"/>

</beans:bean>

Second, register the filter as first filter in the request filter chain. You might want to use the
before="FIRST" or after="FIRST" attribute if you have multiple request filters, which should be run before
the default filters.

simple Spring Security filter insertion.

<http auto-config="false" use-expressions="true">

 <custom-filter ref="retainAnchorFilter" after="FIRST"/>

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 39

</http>

Nevertheless, the oasp4j follows a different approach. The simple interface of Spring Security for
inserting custom filters as stated above is driven by a relative alignment of the different filters been
executed. You relatively can insert custom filters before or after existing ones and also at the beginning
or at the end. You might easily see, that the real filter chain will get more and more invisible. Thus the
oasp4j follows the default ordering of the Spring Security filter chain, such that it gets more transparent
for any developer, which filters will be executed in which order and at which position a new custom filter
may be inserted.

This documentation depends on Spring Security v3.2.5.RELEASE:

• general filter ordering

• detailed filter ordering

These lists will be maintained each release, which will include a Spring Security upgrade. Thus first,
we will not loose any changes from the possibly updated default filter chain of Spring Security. Second,
due to the absolute declaration of the filter order, you might not get any strange behavior in your system
after upgrading to a new version of Spring Security.

4.2.1.3 Users vs. Systems

If we are talking about authentication we have to distinguish two forms of principals:

• human users

• autonomous systems

While e.g. a Kerberos/SPNEGO Single-Sign-On makes sense for human users it is pointless for
authenticating autonomous systems. So always keep this in mind when you design your authentication
mechanisms and separate access for human users from access for systems.

4.2.2 Authorization

Definition:

Authorization is the verification that an authenticated user is allowed to perform the
operation he intends to invoke.

4.2.2.1 Clarification of terms

For clarification we also want to give a common understanding of related terms that have no unique
definition and consistent usage in the wild.

Table 4.3. Security terms related to authorization

Term Meaning and comment

Permission A permission is an object that allows a principal to perform an operation in the
system. This permission can be granted (give) or revoked (taken away). Sometimes
people also use the term right what is actually wrong as a right (such as the right to
be free) can not be revoked.

http://docs.spring.io/spring-security/site/docs/3.2.5.RELEASE/reference/htmlsingle/#filter-ordering
http://docs.spring.io/spring-security/site/docs/3.2.5.RELEASE/reference/htmlsingle/#ns-custom-filters

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 40

Term Meaning and comment

Group We use the term group in this context for an object that contains permissions. A
group may also contain other groups. Then the group represents the set of all
recursively contained permissions.

Role We consider a role as a specific form of group that also contains permissions. A role
identifies a specific function of a principal. A user can act in a role.

For simple scenarios a principal has a single role associated. In more complex
situations a principal can have multiple roles but has only one active role at a time
that he can choose out of his assigned roles. For KISS it is sometimes sufficient
to avoid this by creating multiple accounts for the few users with multiple roles.
Otherwise at least avoid switching roles at runtime in clients as this may cause
problems with related states. Simply restart the client with the new role as parameter
in case the user wants to switch his role.

Access
Control

Any permission, group, role, etc., which declares a control for access management.

4.2.2.2 Suggestions on the access model

The access model provided by oasp4j-security follows this suggestions:

• Each Access Control (permission, group, role, …) is uniquely identified by a human readable string.

• We create a unique permission for each use-case.

• We define groups that combine permissions to typical and useful sets for the users.

• We define roles as specific groups as required by our business demands.

• We allow to associate users with a list of Access Controls.

• For authorization of an implemented use case we determine the required permission. Furthermore,
we determine the current user and verify that the required permission is contained in the tree spanned
by all his associated Access Controls. If the user does not have the permission we throw a security
exception and thus abort the operation and transaction.

• We try to avoid negative permissions, that is a user has no permission by default but only those
granted to him additively permit him for executing use cases.

• Technically we consider permissions as a secret of the application. Administrators shall not fiddle
with individual permissions but grant them via groups. So the access management provides a list
of strings identifying the Access Controls of a user. The individual application itself contains these
Access Controls in a structured way, whereas each group forms a permission tree.

4.2.2.3 oasp4j-security

The OASP provides a ready to use module oasp4j-security that is based on spring-security and makes
your life a lot easier.

http://projects.spring.io/spring-security/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 41

Figure 4.1. OASP4J Security Model

The diagram shows the model of oasp4j-security that separates two different aspects:

• The Indentity- and Access-Management is provided by according products and typically already
available in the enterprise landscape (e.g. an active directory). It provides a hierarchy of primary
access control objects (roles and groups) of a user. An administrator can grant and revoke
permissions (indirectly) via this way.

• The application security is using oasp4j-security defines a hierarchy of secondary access control
objects (groups and permissions) in the file access-control-schema.xml (see example from sample
app). This hierarchy defines the application internal access control schema that should be an
implementation secret of the application. Only the top-level access control objects are public and
define the interface to map from the primary to secondary access control objects. This mapping is
simply done by using the same names for access control objects to match.

Access Control Schema

The oasp4j-security module provides a simple and efficient way to define permissions and roles.
The file access-control-schema.xml is used to define the mapping from groups to permissions.
The general terms discussed above can be mapped to the implementation as follows:

Table 4.4. General security terms related to oasp4j access control schema

Term oasp4j-
security
implementation

Comment

Permission AccessControlPermission

Group AccessControlGroupWhen considering different levels of groups of different meanings,
declare type attribute, e.g. as "group".

https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-core/src/main/resources/config/app/security/access-control-schema.xml
https://github.com/oasp/oasp4j/blob/develop/oasp4j-samples/oasp4j-sample-core/src/main/resources/config/app/security/access-control-schema.xml

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 42

Term oasp4j-
security
implementation

Comment

Role AccessControlGroupWith type="role".

Access
Control

AccessControlSuper type that represents a tree of AccessControlGroups
and AccessControlPermissions. If a principal "has" a
AccessControl he also "has" all AccessControls with according
permissions in the spanned sub-tree.

Example access-control-schema.xml.

<?xml version="1.0" encoding="UTF-8"?>

<access-control-schema>

 <group id="ReadMasterData" type="group">

 <permissions>

 <permission id="OfferManagement_GetOffer"/>

 <permission id="OfferManagement_GetProduct"/>

 <permission id="TableManagement_GetTable"/>

 <permission id="StaffManagement_GetStaffMember"/>

 </permissions>

 </group>

 <group id="Waiter" type="role">

 <inherits>

 <group-ref>Barkeeper</group-ref>

 </inherits>

 <permissions>

 <permission id="TableManagement_ChangeTable"/>

 </permissions>

 </group>

 ...

</access-control-schema>

This example access-control-schema.xml declares

• a group named ReadMasterData, which grants four different permissions, e.g.,
OfferManagement_GetOffer

• a group named Waiter, which

• also grants all permissions from the group Barkeeper

• in addition grants the permission TableManagement_ChangeTable

• is marked to be a role for further application needs.

The oasp4j-security module automatically validates the schema configuration and will throw an
exception if invalid.

Unfortunately, Spring Security does not provide differentiated interfaces for authentication
and authorization. Thus we have to provide an AuthenticationProvider, which
is provided from Spring Security as an interface for authentication and authorization
simultaneously. To integrate the oasp4j-security provided access control schema,
you can simply inherit your own implementation from the oasp4j-security provided
abstract class AbstractAccessControlBasedAuthenticationProvider and register
your ApplicationAuthenticationProvider as an AuthenticationManager. Doing
so, you also have to declare the two Beans AccessControlProvider and

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 43

AccessControlSchemaProvider as listed below, which are precondition for the
AbstractAccessControlBasedAuthenticationProvider.

Example integration of oasp4j-security access control schema.

<bean id="AuthenticationManager" class="org.springframework.security.authentication.ProviderManager">

 <constructor-arg>

 <list>

 <ref bean="ApplicationAuthenticationProvider"/>

 </list>

 </constructor-arg>

</bean>

<bean id="AccessControlProvider" class="io.oasp.module.security.common.impl.accesscontrol.AccessControlProviderImpl"/

>

<bean id="AccessControlSchemaProvider" class="io.oasp.module.security.common.impl.accesscontrol.AccessControlSchemaProviderImpl"/

>

Configuration on URL level

The authorization (in terms of Spring security "access management") can be enabled seperately for
different url patterns, the request will be matched against. The order of these url patterns is essential
as the first matching pattern will declare the access restriction for the incoming request (see access
attribute). Here an example:

Extensive example of authorization on URL level.

<bean id="FilterSecurityInterceptor" class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

 <property name="authenticationManager" ref="AuthenticationManager"/>

 <property name="accessDecisionManager" ref="FilterAccessDecisionManager"/>

 <property name="securityMetadataSource">

 <security:filter-security-metadata-source use-expressions="true">

 <security:intercept-url pattern="/" access="isAnonymous()"/>

 <security:intercept-url pattern="/index.jsp" access="isAnonymous()"/>

 <security:intercept-url pattern="/security/login*" access="isAnonymous()"/>

 <security:intercept-url pattern="/j_spring_security_login*" access="isAnonymous()"/>

 <security:intercept-url pattern="/j_spring_security_logout*" access="isAnonymous()"/>

 <security:intercept-url pattern="/services/rest/security/currentuser/" access="isAnonymous() or

 isAuthenticated()"/>

 <security:intercept-url pattern="/**" access="isAuthenticated()"/>

 </security:filter-security-metadata-source>

 </property>

</bean>

<bean id="FilterAccessDecisionManager" class="org.springframework.security.access.vote.UnanimousBased">

 <constructor-arg>

 <list>

 <bean class="org.springframework.security.web.access.expression.WebExpressionVoter"/>

 </list>

 </constructor-arg>

</bean>

Configuration on Java Method level

As state of the art oasp4j will focus on role-based authorization to cope with authorization for
executing use case of an application. We will use the JSR250 annotations, mainly @RolesAllowed,
for authorizing method calls against the permissions defined in the annotation body. This has to be done
for each use-case method in logic layer. Here is an example:

public class UcFindTableImpl extends AbstractTableUc implements UcFindTable {

 @RolesAllowed(PermissionConstants.FIND_TABLE)

 public TableEto findTable(Long id) {

 return getBeanMapper().map(getTableDao().findOne(id), TableEto.class);

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 44

 }

}

Now this method can only be called if a user is logged-in that has the permission FIND_TABLE.

Check Data-based Permissions

Currently, we have no best practices and reference implementations to apply permission based access
on an application’s data. Nevertheless, this is a very important topic due to the high standards of data
privacy & protection especially in germany. We will further investigate this topic and we will adress it in
one of the next releases. For further tracking have a look at issue #125.

4.2.3 Vulnerabilities and Protection

Independent from classical authentication and authorization mechanisms there are many common
pitfalls that can lead to vulnerabilities and security issues in your application such as XSS, CSRF, SQL-
injection, log-forging, etc. A good source of information about this is the OWASP. We address these
common threats individually in security sections of our technological guides as a concrete solution to
prevent an attack typically depends on the according technology. The following table illustrates common
threats and contains links to the solutions and protection-mechanisms provided by the OASP:

Table 4.5. Security threats and protection-mechanisms

Thread Protection Link to details

A1 Injection validate input, escape output,
use proper frameworks

data-access-layer guide

A2 Broken Authentication and
Session Management

encrypt all channels, use a
central identity management
with strong password-policy

Authentication

A3 XSS prevent injection (see A1) for
HTML, JavaScript and CSS and
understand same-origin-policy

client-layer

A4 Insecure Direct Object
References

Using direct object references
(IDs) only with appropriate
authorization

See issue #86

A5 Security Misconfiguration Use OASP application template
and guides to avoid

application template

A6 Sensitive Data Exposure Use secured exception facade,
design your data model
accordingly

REST exception handling

A7 Missing Function Level
Access Control

Ensure proper authorization for
all use-cases, use @DenyAll
als default to enforce

Method authorization

A8 CSRF secure mutable service
operations with an explicit
CSRF security token sent in
HTTP header and verified on
the server

service-layer security

https://github.com/oasp/oasp4j/issues/125
https://www.owasp.org
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://github.com/oasp/oasp4j/issues/86
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://repo1.maven.org/maven2/io/oasp/java/templates/
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 45

Thread Protection Link to details

A9 Using Components with
Known Vulnerabilities

subscribe to security
newsletters, recheck products
and their versions continuously,
use OASP dependency
management

CVE newsletter

A10 Unvalidated Redirects and
Forwards

Avoid using redirects and
forwards, in case you need
them do a security audit on the
solution.

OASP proposes to use rich-
clients (SPA/RIA). We only use
redirects for login in a safe way.

Log-Forging Escape newlines in log
messages

logging security

Tool for testing your web application against vulnerabilities: OWASP Zed Attack Proxy Project

1. Easy to Install

2. Supports Different types of Fuzzer Based Tests

3. Details Results Reports

4. Convenient to carry out Test on Staging environment

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://cve.mitre.org/news/newsletter.html
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Log_Forging
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 46

4.3 Dependency Injection

Dependency injection is one of the most important design patterns and is a key principle to a modular and
component based architecture. The Java Standard for dependency injection is javax.inject (JSR330)
that we use in combination with JSR250.

There are many frameworks which support this standard including all recent JEE application servers. We
recommend to use Spring (a.k.a. springframework) that we use in our example application. However,
the modules we provide typically just rely on JSR330 and can be used with any compliant container.

4.3.1 Example Bean

Here you can see the implementation of an example bean using JSR330 and JSR250:

@Named

public class MyBeanImpl implements MyBean {

 private MyOtherBean myOtherBean;

 @Inject

 public void setMyOtherBean(MyOtherBean myOtherBean) {

 this.myOtherBean = myOtherBean;

 }

 @PostConstruct

 public void init() {

 // initialization if required (otherwise omit this method)

 }

 @PreDestroy

 public void dispose() {

 // shutdown bean, free resources if required (otherwise omit this method)

 }

}

It depends on MyOtherBean that should be the interface of an other component that is injected into the
setter because of the @Inject annotation. To make this work there must be exactly one implementation
of MyOtherBean in the container (in our case spring). In order to put a Bean into the container we use
the @Named annotation so in our example we put MyBeanImpl into the container. Therefore it can be
injected into all setters that take the interface MyBean as argument and are annotated with @Inject. To
make spring find all your beans annotated with @Named in the package com.mypackage.example and
its sub-packages you use the following element in your spring XML configuration:

<context:component-scan base-package="com.mypackage.example"/>

In some situations you may have an Interface that defines a kind of "plugin" where you can have multiple
implementations in your container and want to have all of them. Then you can request a list with all
instances of that interface as in the following example:

 @Inject

 public void setConverters(List<MyConverter> converters) {

 this.converters = converters;

 }

4.3.2 Spring Usage and Conventions

Spring is an awesome framework that we highly recommend. However it has a long history and therefore
offers many different ways to archive the same goals while some of them might lead you on the wrong
track. The OASP4J helps you to do things right and defines conventions that give your development
teams orientation.

http://docs.oracle.com/javaee/6/api/javax/inject/package-summary.html
http://docs.oracle.com/javaee/5/api/javax/annotation/package-summary.html
http://spring.io/
http://spring.io/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 47

4.3.2.1 Spring XML Files

Besides JSR330 it is sometimes necessary to use spring XML files in order to configure specific aspects.
These files should be named beans-*.xml and located under src/main/resources/config/app/ (see
configuration guide). If they are for test purposes they should be named beans-test-*.xml and located
under src/test/resources/config/app/. This helps you to find files easier and faster during development
in your IDE. Additionally, we defined a recommendation how to structure the spring XML configurations
of your application as you can see in our sample application.

• src/main/resources/config/app/

• beans-application.xml

• common/

• beans-common.xml

• …

• logic/

• beans-logic.xml

• …

• persistence/

• beans-persistence.xml

• beans-jpa.xml

• …

• service/

• beans-service.xml

• …

4.3.3 Key Principles

A Bean in CDI (Context and Dependency-Injection) or Spring is typically part of a larger component and
encapsulates some piece of logic that should in general be replaceable. As an example we can think of
a Use-Case, Data-Access-Object (DAO), etc. As best practice we use the following principles:

• Separation of API and implementation
We create a self-contained API documented with JavaDoc. Then we create an implementation of
this API that we annotate with @Named. This implementation is treated as secret. Code from other
components that wants to use the implementation shall only rely on the API. Therefore we use
dependency injection via the interface with the @Inject annotation.

• Stateless implementation
By default implementations (CDI-Beans) shall always be stateless. If you store state information in
member variables you can easily run into concurrency problems and nasty bugs. This is easy to avoid
by using local variables and separate state classes for complex state-information. Try to avoid stateful

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 48

CDI-Beans wherever possible. Only add state if you are fully aware of what you are doing and properly
document this as a warning in your JavaDoc.

• Usage of JSR330
We use javax.inject (JSR330) and JSR250 as a common standard that makes our code portable
(works in any modern JEE environemnt). However, we recommend to use the springframework as
container. But we never use proprietary annotations such as @Autowired or @Required.

• Setter Injection
For productive code (src/main/java) we use setter injection. Compared to private field injection this
allows better testability and setting breakpoints for debugging. Compared to constructor injection it
is better for maintenance. In spring integration tests (src/test/java) private field injection is preferred
for simplicity.

• KISS
To follow the KISS (keep it small and simple) principle we avoid advanced features (e.g. AOP, non-
singleton beans) and only use them where necessary.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 49

4.4 Configuration

For flexibility an application needs to be configurable. So far there is no general standard for
configurations and how to structure and name configuration files. Therefore the OASP4J gives you
detailed instructions and best-practices how to deal with configurations and manage them. This prevents
chaos and leads to success in maintenance and operations. In general we distinguish the following
kinds of configurations that are explained in the following sections:

• application configuration maintained by developers

• environment configuration maintained by operators

• business configuration maintained by business administrators

4.4.1 Application Configuration

The application configuration contains all internal settings of the application (component
implementations, integration, database mappings, etc.) and is maintained by the application developers.
As we make intensive use of the spring framework this is especially about Spring XML configuration
files. According to dependency-injection we only use Spring XML to configure specific integrations and
general setup. The application configuration resides in the folder app.

4.4.1.1 beans-application

As you can see in our configuration file layout we use beans-application.xml to bundle the configuration
of the entire application. This file represents the root of the application configuration and imports all other
configurations for different aspects (layers and technical components).

4.4.1.2 beans-aspect

Every aspects of an application configuration lies in an own folder, named after the aspect. The folder
contains the configuration file beans-aspect.xml, which is is the root configuration file for this aspect.
Every configuration beans-aspect.xml can again be divided into additional configurations located in the
same aspect folder.

Example of an aspect structure:

• aspect

• beans-aspect.xml

• …

For further explanation of the Spring XML configuration consult spring documentation.

You can find a more comprehensive example of the structure of an application configuration at the
configuration file layout example.

4.4.1.3 Logging configuration

The main configuration file logback.xml resides directly in src/main/resources and is not located in the
app folder. The logging configuration is explained in detail in the logging guide.

4.4.2 Environment Configuration

The environment configuration contains configuration parameters (port numbers, host names,
passwords, logins, timeouts, certificates, etc.) specific for the different environments. These are under

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-factory-metadata

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 50

the control of the operators responsible for the application. As we suggest to only have one application
per servlet-container (tomcat) the environment specific configuration is to be placed into tomcat/lib/
config/env/application.properties so it will be found by the classloader of the web-application (the
deployed WAR file). In this application.properties you only define the minimum properties that are
environment specific and inherit everything else from the application-default.properties, which itself
resides in the app folder.

4.4.2.1 application.properties

The file application.properties and application-default.properties can define various properties. The
common defaults for the application shall be defined in application-default.properties that is bundled
and deployed with the application. The application.properties file itself must NOT declare all properties
of the application-default.properties again.

These properties are explained in the corresponding configuration sections of the guides for each topic:

• persistence configuration

• service configuration

4.4.3 Business Configuration

The business configuration contains all business configuration values of the application, which can be
edited by administrators through the GUI. The business configuration values are stored in the database
in key/value pairs.

The database table business_configuration has the following columns:

• ID

• Property name

• Property type (Boolean, Integer, String)

• Property value

• Description

According to the entries in this table, the GUI shows a generic form to change business configuration.
The hierachy of the properties determines the place in the GUI, so the GUI bundles properties from the
same hierarchy level and name. Boolean values are shown as checkboxes, integer and string values
as text fields. The properties are read and saved in a typed form, an error is raised if you try to save
a string in an integer property for example.

We recommend the following base layout for the hierarchical business configuration:

component.[subcomponent].[subcomponent].propertyname

4.4.4 Configuration Files

We read configurations from the java classpath to make things flexible and easy. In your application
project you will find and add the configurations below the directory src/main/resources/.

The OASP defines a generic layout for configurations on the classpath in the following form:

• src/main/resources

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 51

• config/

• env (not delivered with application, only in * src/test/resources/)

• application.properties

• …

• app

• common

• beans-common.xml

• …

• logic

• beans-logic.xml

• …

• persistence

• beans-jpa.xml

• beans-persistence.xml

• NamedQueries.xml

• …

• security

• access-control-schema.xml

• beans-security.xml

• …

• beans-application.xml

• application-default.properties

• …

• logback.xml

https://github.com/oasp/oasp4j/wiki/guide-security#access-control-schema

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 52

4.5 Validation

Validation is about checking syntax and semantics of input data. Invalid data is rejected by the
application. Therefore validation is required in multiple places of an application. E.g. the GUI will do
validation for usability reasons to assist the user, early feedback and to prevent unnecessary server
requests. On the server-side validation has to be done for consistency and security.

In general we distinguish these forms of validation:

• stateless validation will produce the same result for given input at any time (for the same code/
release).

• stateful validation is dependent on other states and can consider the same input data as valid in once
case and as invalid in another.

4.5.1 Stateless Validation

For regular, stateless validation we use the JSR303 standard that is also called bean validation (BV).
Details can be found in the specification. As implementation we recommend hibernate-validator.

4.5.1.1 Example

A description of how to enable BV can be found in the relevant Spring documentation. For a quick
summary follow these steps:

• Make sure that hibernate-validator is located in the classpath by adding a dependency to the pom.xml.

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 </dependency>

• Define Spring beans:

 <bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

 <bean class="org.springframework.validation.beanvalidation.MethodValidationPostProcessor"/>

• Add the @Validated annotation to the implementation (spring bean) to be validated. For methods to
validate go to their declaration and add constraint annotations to the method parameters.

• @Valid annotation to the arguments to validate (if that class itself is annotated with constraints to
check).

• @NotNull for required arguments.

• Other constraints (e.g. @Size) for generic arguments (e.g. of type String or Integer). However,
consider to create custom datatypes and avoid adding too much validation logic (especially
redundant in multiple places).

OffermanagementRestServiceImpl.java.

@Validated

public class OffermanagementRestServiceImpl implements RestService {

 ...

 public void createOffer(@Valid OfferEto offer) {

 ...

http://beanvalidation.org/1.1/spec/
http://hibernate.org/validator/
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/htmlsingle/#validation-beanvalidation

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 53

• Finally add appropriate validation constraint annotations to the fields of the ETO class.

OfferEto.java.

 @NotNegativeMoney

 private Money currentPrice;

A list with all bean validation constraint annotations available for hibernate-validator can be found here.
In addition it is possible to configure custom constraints. Therefor it is neccessary to implement a
annotation and a corresponding validator. A description can also be found in the Spring documentation
or with more details in the hibernate documentation.

4.5.1.2 GUI-Integration

TODO

4.5.1.3 Cross-Field Validation

BV has poor support for this. Best practice is to create and use beans for ranges, etc. that solve this.
A bean for a range could look like so:

public class Range<V extends Comparable<V>> {

 private V min;

 private V max;

 public Range(V min, V max) {

 super();

 if ((min != null) && (max != null)) {

 int delta = min.compareTo(max);

 if (delta > 0) {

 throw new ValueOutOfRangeException(null, min, min, max);

 }

 }

 this.min = min;

 this.max = max;

 }

 public V getMin() ...

 public V getMax() ...

4.5.2 Stateful Validation

For complex and stateful business validations we do not use BV (possible with groups and context, etc.)
but follow KISS and just implement this on the server in a straight forward manner. An example is the
deletion of a table in the example application. Here the state of the table must be checked first:

UcManageTableImpl.java.

 public boolean deleteTable(Long tableId) {

 TableEntity table = getTableDao().find(tableId);

 if (!table.getState().isFree()) {

 throw new IllegalEntityStateException(table, table.getState());

 }

 getTableDao().delete(table);

 return true;

 }

Implementing this small check with BV would be a lot more effort.

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#table-spec-constraints
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/htmlsingle/#validation-beanvalidation-spring-constraints
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html/validator-customconstraints.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 54

4.6 Auditing

For database auditing we use hibernate envers. If you want to use auditing ensure you have the following
dependency in your pom.xml:

<dependency>

 <groupId>io.oasp.java.modules</groupId>

 <artifactId>oasp4j-jpa-envers</artifactId>

</dependency>

Make sure that entity manager (configured in beans-jpa.xml) also scans the package from the oasp4j-
jpa[-envers] module in order to work properly.

...

<property name="packagesToScan">

 <list>

 <value>io.oasp.module.jpa.dataaccess.api</value>

 ...

 </list>

Now let your DAO implementation extend from AbstractRevisionedDao instead of AbstractDao and your
DAO interface extend from [Application]RevisionedDao instead of [Application]Dao.

The DAO now has a method getRevisionHistory(entity) available to get a list of revisions for a given
entity and a method load(id, revision) to load a specific revision of an entity with the given ID.

To enable auditing for a entity simply place the @Audited annotation to your entity and all entity classes
it extends from.

@Entity(name = "Drink")

@Audited

public class DrinkEntity extends ProductEntity implements Drink {

...

When auditing is enabled for an entity an additional database table is used to store all changes to
the entity table and a corresponding revision number. This table is called <ENTITY_NAME>_AUD
per default. Another table called REVINFO is used to store all revisions. Make sure that these tables
are available. They can be generated by hibernate with the following property (only for development
environments).

 database.hibernate.hbm2ddl.auto=create

Another possibility is to put them in your database migration scripts like so.

CREATE CACHED TABLE PUBLIC.REVINFO(

 id BIGINT NOT NULL generated by default as identity (start with 1),

 timestamp BIGINT NOT NULL,

 user VARCHAR(255)

);

...

CREATE CACHED TABLE PUBLIC.<TABLE_NAME>_AUD(

 <ALL_TABLE_ATTRIBUTES>,

 revtype TINYINT,

 rev BIGINT NOT NULL

);

http://envers.jboss.org/

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 55

4.7 Aspect Oriented Programming (AOP)

AOP is a powerful feature for cross-cutting concerns. However, if used extensive and for the wrong
things an application can get unmaintainable. Therefore we give you the best practices where and how
to use AOP properly.

4.7.1 AOP Key Principles

We follow these principles:

• We use spring AOP based on dynamic proxies (and fallback to cglib).

• We avoid AspectJ and other mighty and complex AOP frameworks whenever possible

• We only use AOP where we consider it as necessary (see below).

4.7.2 AOP Usage

We recommend to use AOP with care but we consider it established for the following cross cutting
concerns:

• Transaction-Handling

• Authorization

• Trace-Logging (for testing and debugging)

• Exception facades for services but only if no other solution is possible (use alternatives such as JAX-
RS provider instead).

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://docs.spring.io/spring/docs/2.5.4/reference/aop.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 56

4.8 Exception Handling

4.8.1 Exception Principles

For exceptions we follow these principles:

• We only use exceptions for exceptional situations and not for programming control flows, etc. Creating
an exception in Java is expensive and hence you should not do it just for testing if something is
present, valid or permitted. In the latter case design your API to return this as a regular result.

• We use unchecked exceptions (RuntimeException)

• We distinguish internal exceptions and user exceptions:

• Internal exceptions have technical reasons. For unexpected and exotic situations it is sufficient to
throw existing exceptions such as IllegalStateException. For common scenarios a own exception
class is reasonable.

• User exceptions contain a message explaining the problem for end users. Therefore we always
define our own exception classes with a clear, brief but detailed message.

• Our own exceptions derive from an exception base class supporting

• unique ID per instance

• Error code per class

• message templating (see I18N)

• distinguish between user exceptions and internal exceptions

All this is offered by mmm-util-core that we propose as solution.

4.8.2 Exception Example

Here is an exception class from our sample application:

public class IllegalEntityStateException extends RestaurantBusinessException {

 private static final long serialVersionUID = 1L;

 public IllegalEntityStateException(RestaurantEntity entity, Object state) {

 super(createBundle(NlsBundleRestaurantRoot.class).errorIllegalEntityState(entity, state));

 }

 public IllegalEntityStateException(RestaurantEntity entity, Object currentState, Object newState) {

 super(createBundle(NlsBundleRestaurantRoot.class).errorIllegalEntityStateChange(entity,

 currentState, newState));

 }

}

The message templates are defined in the interface NlsBundleRestaurantRoot as following:

public interface NlsBundleRestaurantRoot extends NlsBundle {

 @NlsBundleMessage("The entity {entity} is in state {state}!")

 NlsMessage errorIllegalEntityState(@Named("entity") Object entity, @Named("state") Object state);

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#getUuid%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#getCode%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsThrowable.html#getNlsMessage%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/NlsRuntimeException.html#isForUser%28%29
http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/exception/api/package-summary.html#documentation

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 57

 @NlsBundleMessage("The entity {entity} in state {currentState} can not be changed to state

 {newState}!")

 NlsMessage errorIllegalEntityStateChange(@Named("entity") Object entity, @Named("currentState") Object

 currentState, @Named("newState") Object newState);

}

4.8.3 Handling Exceptions

For catching and handling exceptions we follow these rules:

• We do not catch exceptions just to wrap or to re-throw them.

• If we catch an exception and throw a new one, we always have to provide the original exception as
cause to the constructor of the new exception.

• At the entry points of the application (e.g. a service operation) we have to catch and
handle all throwables. This is done via the exception-facade-pattern via an explicit facade
or aspect. The OASP4J already provides ready-to-use implementations for this such as
RestServiceExceptionFacade. The exception facade has to…

• log all errors (user errors on info and technical errors on error level)

• convert the error to a result appropriable for the client and secure for Sensitive Data Exposure.
Especially for security exceptions only a generic security error code or message may be revealed
but the details shall only be logged but not be exposed to the client. All internal exceptions are
converted to a generic error with a message like:

An unexpected technical error has occurred. We apologize any inconvenience.
Please try again later.

http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html#getCause%28%29
https://github.com/oasp/oasp4j/blob/develop/oasp4j-rest/src/main/java/io/oasp/module/rest/service/impl/RestServiceExceptionFacade.java
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 58

4.9 Internationalization

Internationalization (I18N) is about writing code independent from locale-specific informations. For I18N
of text messages we are suggesting mmm native-language-support.

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/nls/api/package-summary.html#documentation

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 59

4.10 XML

XML (eXtensible Markup Language) is a W3C standard format for structured information. It has a large
eco-system of additional standards and tools.

In Java there are many different APIs and frameworks for accessing, producing and processing XML.
For the OASP we recommend to use JAXB for mapping Java objects to XML and vice-versa. Further
there is the popular DOM API for reading and writing smaller XML documents directly. When processing
large XML documents StAX is the right choice.

4.10.1 JAXB

We use JAXB to serialize Java objects to XML or vice-versa.

4.10.1.1 JAXB and Inheritance

TODO @XmlSeeAlso http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-
polymorphic-classes

4.10.1.2 JAXB Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to define a custom mapping. If you create dedicated objects dedicated for the XML mapping you can
easily avoid such situations. When this is not suitable follow these instructions to define the mapping:
TODO

https://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html

http://en.wikipedia.org/wiki/XML
http://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
http://en.wikipedia.org/wiki/StAX
http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-polymorphic-classes
http://stackoverflow.com/questions/7499735/jaxb-how-to-create-xml-from-polymorphic-classes
https://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 60

4.11 JSON

JSON (JavaScript Object Notation) is a popular format to represent and exchange data especially for
modern web-clients. For mapping Java objects to JSON and vice-versa there is no official standard API.
We use the established and powerful open-source solution Jackson. Due to problems with the wiki of
fasterxml you should try this alternative link: Jackson/AltLink.

4.11.1 JSON and Inheritance

If you are using inheritance for your objects mapped to JSON then polymorphism can not be supported
out-of-the box. So in general avoid polymorphic objects in JSON mapping. However, this is not always
possible. Have a look at the following example from our sample application:

Figure 4.2. Transfer-Objects using Inheritance

Now assume you have a REST service operation as Java method that takes a ProductBo as argument.
As this is an abstract class the server needs to know the actual sub-class to instantiate. We typically do
not want to specify the classname in the JSON as this should be an implementation detail and not part
of the public JSON format (e.g. in case of a service interface). Therefore we use a symbolic name for
each polymorphic subtype that is provided as virtual attribute @type within the JSON data of the object:

{ "@type": "Drink", ... }

The easiest way to archive this is by adding annotations to your polymorphic Java objects:

@JsonTypeInfo(use = JsonTypeInfo.Id.NAME, include = As.PROPERTY, property = "@type")

@JsonSubTypes({ @Type(value = DringBo.class, name = "Drink"), @Type(value = MealBo.class, name =

 "Meal"),

 @Type(value = SideDishBo.class, name = "SideDish") })

public abstract class ProductBo extends AbstractBo {

 ...

}

However, to avoid dependencies to proprietary annotations of the JSON framework in your (business)
objects the OASP provides you with the class ObjectMapperFactory in the oasp4j-rest module that you
can subclass to configure jackson for your polymorphic types. Here is an example from the sample
application:

@Named("RestaurantObjectMapperFactory")

public class RestaurantObjectMapperFactory extends ObjectMapperFactory {

 public RestaurantObjectMapperFactory() {

 super();

 setBaseClasses(ProductBo.class);

http://en.wikipedia.org/wiki/JSON
http://wiki.fasterxml.com/JacksonHome
https://github.com/FasterXML/jackson#jackson-project-home-github

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 61

 setSubtypes(new NamedType(MealBo.class, "Meal"), new NamedType(DrinkBo.class, "Drink"), new

 NamedType(

 SideDishBo.class, "SideDish"));

 }

}

Here we use setBaseClasses to register the top-level classes of polymorphic objects. Then you declare
all concrete polymorphic sub-classes together with their symbolic name for the JSON format via
setSubtypes.

4.11.2 JSON Custom Mapping

In order to map custom datatypes or other types that do not follow the Java bean conventions, you need
to define a custom mapping. If you create objects dedicated for the JSON mapping you can easily avoid
such situations. When this is not suitable follow these instructions to define the mapping:

1. As an example, the use of JSR354 (javax.money) is appreciated in order to process monetary
amounts properly. However, without custom mapping, the default mapping of Jackson will produce
the following JSON for a MonetaryAmount:

"currency": {"defaultFractionDigits":2, "numericCode":978, "currencyCode":"EUR"},

"monetaryContext": {...},

"number":6.99,

"factory": {...}

As clearly can be seen, the JSON contains too much information and reveals implementation secrets
that do not belong here. Instead the JSON output expected and desired would be:

"currency":"EUR","amount":"6.99"

Even worse, when we send the JSON data to the server, Jackson will see that MonetaryAmount is
an interface and does not know how to instantiate it so the request will fail. Therefore we need a
customized Serializer and Deserializer.

2. We implement MonetaryAmountJsonSerializer to define how a MonetaryAmount is serialized to
JSON:

public final class MonetaryAmountJsonSerializer extends JsonSerializer<MonetaryAmount> {

 public static final String NUMBER = "amount";

 public static final String CURRENCY = "currency";

 public void serialize(MonetaryAmount value, JsonGenerator jgen, SerializerProvider provider) throws

 ... {

 if (value != null) {

 jgen.writeStartObject();

 jgen.writeFieldName(MonetaryAmountJsonSerializer.CURRENCY);

 jgen.writeString(value.getCurrency().getCurrencyCode());

 jgen.writeFieldName(MonetaryAmountJsonSerializer.NUMBER);

 jgen.writeString(value.getNumber().toString());

 jgen.writeEndObject();

 }

 }

For composite datatypes it is important to wrap the info as an object (writeStartObject() and
writeEndObject()). MonetaryAmount provides the information we need by the methods getCurrency()
and getNumber(). So that we can easily write them into the JSON data.

3. Next, we implement MonetaryAmountJsonDeserializer to define how a MonetaryAmount is
deserialized back as Java object from JSON:

http://jackson.codehaus.org/1.7.3/javadoc/org/codehaus/jackson/map/JsonSerializer.html
http://jackson.codehaus.org/1.2.1/javadoc/org/codehaus/jackson/map/JsonDeserializer.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 62

public final class MonetaryAmountJsonDeserializer extends AbstractJsonDeserializer<MonetaryAmount> {

 protected MonetaryAmount deserializeNode(JsonNode node) {

 BigDecimal number = getRequiredValue(node, MonetaryAmountJsonSerializer.NUMBER,

 BigDecimal.class);

 String currencyCode = getRequiredValue(node, MonetaryAmountJsonSerializer.CURRENCY,

 String.class);

 MonetaryAmount monetaryAmount =

 MonetaryAmounts.getAmountFactory().setNumber(number).setCurrency(currencyCode).create();

 return monetaryAmount;

 }

}

For composite datatypes we extend from AbstractJsonDeserializer as this makes our task easier.
So we already get a JsonNode with the parsed payload of our datatype. Based on this API
it is easy to retrieve individual fields from the payload without taking care of their order, etc.
AbstractJsonDeserializer also provides methods such as getRequiredValue to read required fields
and get them converted to the desired basis datatype. So we can easily read the amount and currency
and construct an instance of MonetaryAmount via the official factory API.

4. Finally we need to register our custom (de)serializers as following:

@Named("RestaurantObjectMapperFactory")

public class RestaurantObjectMapperFactory extends ObjectMapperFactory {

 public RestaurantObjectMapperFactory() {

 super();

 // ...

 SimpleModule module = getExtensionModule();

 module.addDeserializer(MonetaryAmount.class, new MonetaryAmountJsonDeserializer());

 module.addSerializer(MonetaryAmount.class, new MonetaryAmountJsonSerializer());

 }

}

After we have registered this factory (see above) we’re done!

https://github.com/oasp/oasp4j/blob/develop/oasp4j-rest/src/main/java/org/oasp/module/rest/service/impl/json/AbstractJsonDeserializer.java

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 63

4.12 Testing

4.12.1 General best practices

For testing please follow our general best practices:

• Tests should have a clear goal that should also be documented.

• Tests have to be classified into different integration levels.

• Tests should follow a clear naming convention.

• Automated tests need to properly assert the result of the tested operation(s) in a reliable way. E.g.
avoid stuff like assertEquals(42, service.getAllEntities()) or even worse tests that have no assertion
at all (might still be reasonable to test that an entire configuration setup such as spring config of
application is intact).

• Tests need to be independent of each other. Never write test-cases or tests (in Java @Test methods)
that depend on another test to be executed before.

• Use assert frameworks like AssertJ to write good readable and maintainable tests that also provide
out-of-the-box good failure reports in case a test fails.

• Plan your tests and test data management properly before implementing.

• Instead of having a too strong focus on test coverage better ensure you have covered your critical
core functionality properly and review the code including tests.

• Test code shall NOT be seen as second class code. You shall consider design, architecture and code-
style also for your test code but do not over-engineer it.

• Test automation is good but should be considered in relation to cost per use. Creating full coverage
via automated system tests can cause a massive amount of test-code that can turn out as a huge
maintenance hell. Always consider all aspects including product life-cycle, criticality of use-cases to
test, and variability of the aspect to test (e.g. UI, test-data).

• Use continuous integration and establish that the entire team wants to have clean builds and running
tests.

• Do not use inheritance for cross-cutting testing functionality: Sometimes cross-cutting
functionality like opening/closing a database connection or code to fill a database with test data
is put in a common parent class like AbstractTestCase that all test classes need to inherit from.
Starting with some functions this classes tend to grow up to the point where they become real
maintenance nightmares. Good places to put this needed kind of code can be realized using JUnit
@Rule mechanism. In general favor delegation over inheritance. There are reasons why frameworks
like JEE or JUnit do not use inheritance for technical features - and for the same reasons also project
test frameworks should not do it.

4.12.2 Test Automation Technology Stack

For test automation we use JUnit. However, we are strictly doing all assertions with AssertJ. For mocking
we use mockito. In order to mock remote connections we use wiremock. For testing entire components
or integrations we recommend to use spring-test.

http://joel-costigliola.github.io/assertj/
http://junit.org/
http://joel-costigliola.github.io/assertj/
http://mockito.org/
http://wiremock.org/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html#integration-testing

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 64

4.12.3 Test Doubles

Due to the non-consistent use and understanding of mocks/stubs/fakes/dummies for any kind of
interface for testing purposes, we shortly want to give a common understanding about the different types
of test doubles. Therefore we mainly stick on Gerard Meszaros’s definitions, who also introduced the
term test doubles as generic term for mocks/stubs/fakes/dummies/spys. Another interesting discussion
about stubs VS mocks has been published by Martin Fowler, which focuses more on the differences
between stubs and mocks. A short summary (by Martin Fowler):

• Dummy objects are passed around but never actually used. Usually they are just used to fill parameter
lists.

• Fake objects actually have working implementations, but usually take some shortcut which makes
them not suitable for production (an in memory database is a good example).

• Stubs provide canned answers to calls made during the test, usually not responding at all to anything
outside what’s programmed in for the test. Stubs may also record information about calls, such as
an email gateway stub that remembers the messages it 'sent', or maybe only how many messages
it 'sent'.

• Mocks are objects pre-programmed with expectations, which form a specification of the calls they
are expected to receive.

What both authors do not cover is the applicability of the different concepts. We try to give some
examples, which should make it somehow clearer:

4.12.3.1 Stubs

Best Practices for applications:

• A good way to replace small to medium large boundary systems, whose impact (e.g. latency) should
be ignored during performing load and performance tests of the application under development.

• As stub implementation will rely on state-based verification, there is the threat, that test developers
will partially reimplement the state transitions based on the replaced code. This will immediately lead
to a black maintenance whole, so better use mocks to assure the certain behavior on interface level.

• Do NOT use stubs as basis of a large amount of test cases as due to state-based verification of stubs,
test developers will enrich the stub implementation to become a large monster with its own hunger
after maintenance efforts.

4.12.3.2 Mocks

Best Practices for applications:

• Replace not-needed dependencies of your system-under-test (SUT) to minimize the application
context to start of your component framework.

• Replace dependencies of your SUT to impact the control flow under test without establishing all the
context parameters needed to match the control flow.

• Remember: Not everything has to be mocked! Especially on lower levels of tests like isolated module
tests you can be betrayed into a mocking delusion, where you end up in a hundred lines of code

http://xunitpatterns.com/Using%20Test%20Doubles.html
http://martinfowler.com/articles/mocksArentStubs.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 65

mocking the whole context and five lines executing the test and verifying the mocks behavior. Always
keep in mind the benefit-cost ratio, when implementing tests using mocks.

4.12.4 Integration Levels

There are many discussions about the right level of integration for test automation. Sometimes it is
better to focus on small, isolated modules of the system - whatever a "module" may be. In other cases
it makes more sense to test integrated groups of modules. Because there is no universal answer to this
question, OASP only defines a common terminology for what could be tested. Each project must make
its own decision where to put the focus of test automation. There is no worldwide accepted terminology
for the integration levels of testing. In general we we consider ISTQB. However, with a technical focus
on test automation we want to get more precise.

The following picture shows a simplified view of an application based on the OASP reference
architecture. We define four integration levels that are explained in detail below. The boxes in the picture
contain parenthesized numbers. These numbers depict the lowest integration level, a box belongs to.
Higher integration levels also contain all boxes of lower integration levels. When writing tests for a given
integration level, related boxes with a lower integration level must be replaced by test doubles or drivers.

The main difference between the integration levels is the amount of infrastructure needed to test them.
The more infrastructure you need, the more bugs you will find, but the more instable and the slower
your tests will be. So each project has to make a trade-off between pros and contras of including much
infrastructure in tests and has to select the integration levels that fit best to the project.

Consider, that more infrastructure does not automatically lead to a better bug-detection. There may be
bugs in your software that are masked by bugs in the infrastructure. The best way to find those bugs
is to test with very few infrastructure.

External systems do not belong to any of the integration levels defined here. OASP does not recommend
involving real external systems in test automation. This means, they have to be replaced by test doubles
in automated tests. An exception may be external systems that are fully under control of the own
development team.

The following chapters describe the four integration levels.

http://istqbexamcertification.com/what-are-software-testing-levels/
https://github.com/oasp/oasp4j/wiki/architecture#technical-architecture
https://github.com/oasp/oasp4j/wiki/architecture#technical-architecture

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 66

4.12.4.1 Level 1 Module Test

The goal of a isolated module test is to provide fast feedback to the developer. Consequently, isolated
module tests must not have any interaction with the client, the database, the file system, the network, etc.

An isolated module test is testing a single classes or at least a small set of classes in isolation. If such
classes depend on other components or external resources, etc. these shall be replaced with a test
double.

For an example see here.

4.12.4.2 Level 2 Component Test

A component test aims to test components or component parts as a unit. These tests typically run with
a (light-weight) infrastructure such as spring-test and can access resources such as a database (e.g.
for DAO tests). Further, no remote communication is intended here. Access to external systems shall
be replaced by a test double.

4.12.4.3 Level 3 Subsystem Test

A subsystem test runs against the external interfaces (e.g. HTTP service) of the integrated subsystem.
In OASP4J the server (JEE application) is the subsystem under test. The tests act as a client (e.g.
service consumer) and the server has to be integrated and started in a container.

Subsystem tests of the client subsystem are described in the OASP4JS-Wiki.

Do not confuse a subsystem test with a system integration test. A system integration test validates the
interaction of several systems where we do not recommend test automation.

4.12.4.4 Level 4 System Test

A system test has the goal to test the system as a whole against its official interfaces such as its UI
or batches. The system itself runs as a separate process in a way close to a regular deployment. Only
external systems are simulated by test doubles.

The OASP does only give advices for automated system test. In nearly every project there must be
manual system tests, too. This manual system tests are out of scope here.

4.12.4.5 Classifying Integration-Levels

OASP4J defines Category-Interfaces that shall be used as JUnit Categories. Also OSAP4J provides
abstract base classes that you may extend in your test-cases if you like.

OASP4J further pre-configures the maven build to only run integration levels 1-2 by default (e.g. for fast
feedback in continuous integration). It offers the profiles subsystemtest (1-3) and systemtest (1-4). In
your nightly build you can simply add -Psystemtest to run all tests.

4.12.5 Deployment Pipeline

A deployment pipeline is a semi-automated process that gets software-changes from version control into
production. It contains several validation steps, e.g. automated tests of all integration levels. Because
OASP4J should fit to different project types - from agile to waterfall - it does not define a standard
deployment pipeline. But we recommend to define such a deployment pipeline explicitly for each project
and to find the right place in it for each type of test.

https://github.com/oasp/oasp4j/blob/develop/oasp4j-modules/oasp4j-rest/src/test/java/io/oasp/module/rest/service/impl/RestServiceExceptionFacadeTest.java
http://istqbexamcertification.com/what-is-component-testing/
https://github.com/oasp/oasp4js/wiki/testing
http://istqbexamcertification.com/what-is-system-integration-testing/
http://istqbexamcertification.com/what-is-system-testing/
https://github.com/oasp/oasp4j/tree/develop/oasp4j-modules/oasp4j-test/src/main/java/io/oasp/module/test/common/api/category
https://github.com/junit-team/junit/wiki/Categories
https://github.com/oasp/oasp4j/tree/develop/oasp4j-modules/oasp4j-test/src/main/java/io/oasp/module/test/common/base

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 67

For that purpose, it is advisable to have fast running test suite that gives as much confidence as possible
without needing too much time and too much infrastructure. This test suite should run in an early stage
of your deployment pipeline. Maybe the developer should run it even before he/she checked in the code.
Usually lower integration levels are more suitable for this test suite than higher integration levels.

Note, that the deployment pipeline always should contain manual validation steps, at least manual
acceptance testing. There also may be manual validation steps that have to be executed for special
changes only, e.g. usability testing. Management and execution processes of those manual validation
steps are currently not in the scope of OASP.

4.12.6 Test Coverage

We are using tools (SonarQube/Jacoco) to measure the coverage of the tests. Please always keep in
mind that the only reliable message of a code coverage of X% is that (100-X)% of the code is entirely
untested. It does not say anything about the quality of the tests or the software though it often relates to it.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 68

4.13 Transfer-Objects

The technical data model is defined in form of persistent entities. However, passing persistent entities
via call-by-reference across the entire application will soon cause problems:

• Changes to a persistent entity are directly written back to the persistent store when the transaction is
committed. When the entity is send across the application also changes tend to take place in multiple
places endangering data sovereignty and leading to inconsistency.

• You want to send and receive data via services across the network and have to define what section
of your data is actually transferred. If you have relations in your technical model you quickly end up
loading and transferring way too much data.

• Modifications to your technical data model shall not automatically have impact on your external
services causing incompatibilities.

To prevent such problems transfer-objects are used leading to a call-by-value model and decoupling
changes to persistent entities.

4.13.1 Business-Transfer-Objects

For each persistent entity we create or generate a corresponding entity transfer object (ETO) that has
the same properties except for relations. In order to centralize the properties (getters and setters with
their javadoc) we use a common interface for the entity and its ETO.

If we need to pass an entity with its relation(s) we create a corresponding composite transfer object
(CTO) that only contains other transfer-objects or collections of them. This pattern is illustrated by the
following UML diagram from our sample application.

Figure 4.3. ETOs and CTOs

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 69

Finally, there are typically transfer-objects for data that is never persistent. A common example are
search criteria objects (derived from SearchCriteriaTo in our sample application).

The logic layer defines these transfer-objects (ETOs, CTOs, etc.) and will only pass such objects instead
of persistent entities.

4.13.2 Service-Transfer-Objects

If we need to do service versioning and support previous APIs or for external services with a different
view on the data, we create separate transfer-objects to keep the service API stable (see service layer).

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 70

4.14 Bean-Mapping

For decoupling you sometimes need to create separate objects (beans) for a different view. E.g. for an
external service you will use a transfer-object instead of the persistence entity so internal changes to
the entity do not implicitly change or break the service.

Therefore you have the need to map similar objects what creates a copy. This also has the benefit that
modifications to the copy have no side-effect on the original source object. However, to implement such
mapping code by hand is very tedious and error-prone (if new properties are added to beans bot not
to mapping code):

public PersonTo mapPerson(PersonEntity source) {

 PersonTo target = new PersonTo();

 target.setFirstName(source.getFirstName());

 target.setLastName(source.getLastName());

 ...

 return target;

}

Therefore we are using a BeanMapper for this purpose that makes our lives a lot easier.

4.14.1 Bean-Mapper Dependency

To get access to the BeanMapper we use this dependency in our POM:

 <dependency>

 <groupId>io.oasp.java</groupId>

 <artifactId>oasp4j-beanmapping</artifactId>

 </dependency>

4.14.2 Bean-Mapper Usage

Then we can get the BeanMapper via dependency-injection what we typically already provide by an
abstract base class (e.g. AbstractUc). Now we can solve our problem very easy:

PersonEntity person = ...;

...

return getBeanMapper().map(person, PersonTo.class);

There is also additional support for mapping entire collections.

Dozer has been configured as Spring bean in the file src/main/resources/config/app/common/beans-
dozer.xml.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 71

4.15 Datatypes

A datatype is an object representing a value of a specific type with the following aspects:

• It has a technical or business specific semantic.

• Its JavaDoc explains the meaning and semantic of the value.

• It is immutable and therefore stateless (its value assigned at construction time and
can not be modified).

• It is Serializable.

• It properly implements #equals(Object) and #hashCode() (two different instances
with the same value are equal and have the same hash).

• It shall ensure syntactical validation so it is NOT possible to create an instance with
an invalid value.

• It is responsible for formatting its value to a string representation suitable for sinks
such as UI, loggers, etc. Also consider cases like a Datatype representing a password
where toString() should return something like "**" instead of the actual password to
prevent security accidents.

• It is responsible for parsing the value from other representations such as a string (as
needed).

• It shall provide required logical operations on the value to prevent redundancies. Due
to the immutable attribute all manipulative operations have to return a new Datatype
instance (see e.g. BigDecimal.add(java.math.BigDecimal)).

• It should implement Comparable if a natural order is defined.

Based on the Datatype a presentation layer can decide how to view and how to edit
the value. Therefore a structured data model should make use of custom datatypes in
order to be expressive. Common generic datatypes are String, Boolean, Number and
its subclasses, Currency, etc. Please note that both Date and Calendar are mutable
and have very confusing APIs. Therefore, use JSR-310 or jodatime instead. Even if a
datatype is technically nothing but a String or a Number but logically something special
it is worth to define it as a dedicated datatype class already for the purpose of having
a central javadoc to explain it. On the other side avoid to introduce technical datatypes
like String32 for a String with a maximum length of 32 characters as this is not adding
value in the sense of a real Datatype. It is suitable and in most cases also recommended
to use the class implementing the datatype as API omitting a dedicated interface.

— mmm project datatype javadoc

See mmm datatype javadoc.

4.15.1 Datatype Packaging

For the OASP we use a common packaging schema. The specifics for datatypes are as following:

Segment Value Explanation

<component> * Here we use the (business)
component defining the

http://m-m-m.sourceforge.net/apidocs/net/sf/mmm/util/lang/api/Datatype.html

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 72

Segment Value Explanation

datatype or general for generic
datatypes.

<layer> common Datatypes are used across all
layers and are not assigned to a
dedicated layer.

<scope> api Datatypes are always used
directly as API even tough
they may contain (simple)
implementation logic. Most
datatypes are simple wrappers
for generic Java types (e.g.
String) but make these explicit
and might add some validation.

4.15.2 Datatypes in Entities

The usage of custom datatypes in entities is explained in the persistence layer guide.

4.15.3 Datatypes in Transfer-Objects

4.15.3.1 XML

For mapping datatypes with JAXB see XML guide.

4.15.3.2 JSON

For mapping datatypes from and to JSON see JSON custom mapping.

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 73

4.16 Transaction Handling

Transactions are technically processed by the presentation layer. However, the transaction control has
to be performed in upper layers. To avoid dependencies on persistence layer and technical code in
upper layers, we use AOP to add transaction control via annotations as aspect.

As we recommend using spring, we use the @Transactional annotation (for a JEE application server
you would use @TransactionAttribute instead). We use this annotation in the service layer to annotate
services that participate in transactions (what typically applies to all services).

@Transactional

public class MyExampleServiceImpl {

 public MyDataTo getData(MyCriteriaTo criteria) {

 ...

 }

 ...

}

4.16.1 Batches

Transaction control for batches is a lot more complicated and is described in the batch layer.

http://spring.io

Open Application Standard Platform for Java V1.1.0

This documentation is licensed under the
Creative Commons License (Attribution-

NoDerivatives 4.0 International). 74

4.17 Accessibility

TODO

http://www.w3.org/TR/WCAG20/

http://www.w3.org/WAI/intro/aria

http://www.einfach-fuer-alle.de/artikel/bitv/

http://www.banu.bund.de

http://www.de.capgemini.com/public-sector/igov

http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/intro/aria
http://www.einfach-fuer-alle.de/artikel/bitv/
http://www.banu.bund.de
http://www.de.capgemini.com/public-sector/igov

	Open Application Standard Platform for Java V1.1.0
	Table of Contents
	Introduction
	1. Architecture
	1.1 Key Principles
	1.2 Architecture Principles
	1.3 Application Architecture
	1.3.1 Business Architecture
	1.3.2 Technical Architecture
	1.3.2.1 Technology Stack

	1.3.3 Infrastructure Architecture

	2. Coding
	2.1 Coding Conventions
	2.1.1 Naming
	2.1.2 Packages
	2.1.3 Code Tasks
	2.1.3.1 TODO
	2.1.3.2 FIXME
	2.1.3.3 REVIEW

	2.1.4 Code-Documentation

	3. Layers
	3.1 Client Layer
	3.1.1 Web Clients
	3.1.2 Native Desktop Clients
	3.1.3 Mobile Clients
	3.1.4 Security

	3.2 Service Layer
	3.2.1 Types of Services
	3.2.2 Versioning
	3.2.3 Interoperability
	3.2.4 Protocol
	3.2.4.1 SOAP
	JAX-WS
	SOAP Custom Mapping
	SOAP Testing

	3.2.4.2 REST
	JAX-RS
	JAX-RS Configuration

	HTTP Status Codes
	REST Exception Handling
	REST Media Types
	REST Testing

	3.2.4.3 HTTP-Invoker

	3.2.5 Service Considerations
	3.2.6 Security

	3.3 Logic Layer
	3.3.1 Use Case
	3.3.2 Component Interface
	3.3.2.1 Passing Parameters Among Components
	3.3.2.2 Use Case Example

	3.4 Data-Access Layer
	3.4.1 Persistence
	3.4.1.1 Entity
	A Simple Entity
	Entities and Datatypes
	Enumerations
	BLOB
	Date and Time

	Primary Keys

	3.4.1.2 Data Access Object
	DAO Interface
	DAO Implementation

	3.4.1.3 Queries
	Static Queries
	Using Queries to Avoid Bidirectional Relationships

	Dynamic Queries
	Using Wildcards
	Query Meta-Parameters and Paging

	3.4.1.4 Relationships
	n:1 and 1:1 Relationships
	1:n and n:m Relationships
	Eager vs. Lazy Loading
	Cascading Relationships

	3.4.1.5 Embeddable
	3.4.1.6 Inheritance
	3.4.1.7 Concurrency Control
	Optimistic Locking
	Pessimistic Locking

	3.4.1.8 Database Auditing
	3.4.1.9 Testing Entities and DAOs
	3.4.1.10 Principles

	3.4.2 Database Configuration
	3.4.2.1 Database System and Access
	3.4.2.2 Database Migration

	3.4.3 Security
	3.4.3.1 SQL-Injection
	3.4.3.2 Limited Permissions for Application

	4. Guides
	4.1 Logging
	4.1.1 Usage
	4.1.1.1 Maven Integration
	4.1.1.2 Configuration
	4.1.1.3 Logger Access
	4.1.1.4 How to log

	4.1.2 Operations
	4.1.2.1 Log Files
	4.1.2.2 Output format

	4.1.3 Security

	4.2 Security
	4.2.1 Authentication
	4.2.1.1 Mechanisms
	Basic
	Form Login

	4.2.1.2 Preserve original request anchors after form login redirect
	4.2.1.3 Users vs. Systems

	4.2.2 Authorization
	4.2.2.1 Clarification of terms
	4.2.2.2 Suggestions on the access model
	4.2.2.3 oasp4j-security
	Access Control Schema
	Configuration on URL level
	Configuration on Java Method level
	Check Data-based Permissions

	4.2.3 Vulnerabilities and Protection

	4.3 Dependency Injection
	4.3.1 Example Bean
	4.3.2 Spring Usage and Conventions
	4.3.2.1 Spring XML Files

	4.3.3 Key Principles

	4.4 Configuration
	4.4.1 Application Configuration
	4.4.1.1 beans-application
	4.4.1.2 beans-aspect
	4.4.1.3 Logging configuration

	4.4.2 Environment Configuration
	4.4.2.1 application.properties

	4.4.3 Business Configuration
	4.4.4 Configuration Files

	4.5 Validation
	4.5.1 Stateless Validation
	4.5.1.1 Example
	4.5.1.2 GUI-Integration
	4.5.1.3 Cross-Field Validation

	4.5.2 Stateful Validation

	4.6 Auditing
	4.7 Aspect Oriented Programming (AOP)
	4.7.1 AOP Key Principles
	4.7.2 AOP Usage

	4.8 Exception Handling
	4.8.1 Exception Principles
	4.8.2 Exception Example
	4.8.3 Handling Exceptions

	4.9 Internationalization
	4.10 XML
	4.10.1 JAXB
	4.10.1.1 JAXB and Inheritance
	4.10.1.2 JAXB Custom Mapping

	4.11 JSON
	4.11.1 JSON and Inheritance
	4.11.2 JSON Custom Mapping

	4.12 Testing
	4.12.1 General best practices
	4.12.2 Test Automation Technology Stack
	4.12.3 Test Doubles
	4.12.3.1 Stubs
	4.12.3.2 Mocks

	4.12.4 Integration Levels
	4.12.4.1 Level 1 Module Test
	4.12.4.2 Level 2 Component Test
	4.12.4.3 Level 3 Subsystem Test
	4.12.4.4 Level 4 System Test
	4.12.4.5 Classifying Integration-Levels

	4.12.5 Deployment Pipeline
	4.12.6 Test Coverage

	4.13 Transfer-Objects
	4.13.1 Business-Transfer-Objects
	4.13.2 Service-Transfer-Objects

	4.14 Bean-Mapping
	4.14.1 Bean-Mapper Dependency
	4.14.2 Bean-Mapper Usage

	4.15 Datatypes
	4.15.1 Datatype Packaging
	4.15.2 Datatypes in Entities
	4.15.3 Datatypes in Transfer-Objects
	4.15.3.1 XML
	4.15.3.2 JSON

	4.16 Transaction Handling
	4.16.1 Batches

	4.17 Accessibility

